Transfer operators and emergent dynamics in hyperbolic systems

双曲系统中的传递算子和涌现动力学

基本信息

  • 批准号:
    EP/V053493/1
  • 负责人:
  • 金额:
    $ 49.75万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Dynamical systems is a field of mathematics that is concerned with studying phenomena that evolve in time. It has deep connections with other areas of mathematics such as analysis, number theory, probability and geometry. Many interesting dynamical systems are chaotic in nature. This means they exhibit sensitive dependence on initial conditions and their long-term behaviour cannot be predicted by following their orbits. Thus, it is natural to study the behaviour of such systems form a probabilistic point of view. An instrumental tool to infer statistical aspects of a chaotic dynamical system is called the transfer operator. Such an operator describes how distributions change over time under the evolution of the dynamics. More importantly, its spectral data encode remarkable information, such as rates of correlation decay, extremes and rare events, on the statistics of the underlying dynamics. A fundamental class of chaotic smooth hyperbolic dynamical systems is called Anosov. In the past fifteen years transfer operator techniques produced impressive results on the statistical aspects of smooth, 'idealised' (single site), Anosov systems and made remarkable new connections with other areas of mathematics, namely with semiclassical analysis, a modern topic in mathematical analysis. However, transfer operator techniques are not yet pioneered for coupled Anosov systems, and hence obviously, not for the more general coupled piecewise hyperbolic systems with singularities. Such coupled systems appear naturally as network models in engineering, physical and biological sciences, and are of paramount importance in studying nonequilibrium thermodynamics. This leaves the fruitful approach of transfer operators, and ergodic theory in general, short on providing statistical insights on the behaviour of such complex systems that are capable of producing emergent dynamics: dynamical quantities, such as escape of mass and heat transfer, that appear as a result of interaction among components in a large system. In this project we aim to achieve a new state-of-the art in smooth ergodic theory and hyperbolic dynamics by developing novel transfer operator techniques to understand emergent dynamical quantities and macroscopic statistical properties of 'large dynamical systems' whose microscopic dynamics are piecewise hyperbolic systems with singularities.
动力学系统是一个数学领域,它关注于研究随时间演化的现象。它与数学的其他领域有着深刻的联系,如分析,数论,概率和几何。许多有趣的动力系统本质上是混沌的。这意味着它们对初始条件表现出敏感的依赖性,并且它们的长期行为无法通过跟踪它们的轨道来预测。因此,从概率的角度来研究这种系统的行为是很自然的。一种用来推断混沌动力系统的统计特性的工具叫做转移算子。这种算子描述了在动态演化下分布如何随时间变化。更重要的是,它的光谱数据编码显着的信息,如相关衰减率,极端和罕见的事件,对潜在的动态统计。混沌光滑双曲动力系统的一个基本类别被称为Anosov。在过去的15年中转让运营商技术产生了令人印象深刻的结果统计方面的顺利,“理想化”(单网站),Anosov系统,并取得了显着的新的联系与其他领域的数学,即与半经典分析,一个现代主题的数学分析。然而,转移算子技术尚未开创耦合Anosov系统,因此显然,不为更一般的耦合分段双曲系统的奇异性。这样的耦合系统自然出现在工程,物理和生物科学中的网络模型,并在研究非平衡态热力学中至关重要。这使得富有成效的方法的传输运营商,遍历理论一般,提供统计的见解,这种复杂的系统的行为,能够产生紧急动态:动态量,如逃逸的质量和热量转移,出现作为一个大系统中的组件之间的相互作用的结果。在这个项目中,我们的目标是实现一个新的国家的最先进的光滑遍历理论和双曲动力学通过开发新的传输算子技术,以了解新兴的动力学量和宏观统计性质的“大动力系统”,其微观动力学是分段双曲系统的奇异性。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rates of mixing for the measure of maximal entropy of dispersing billiard maps
用于测量分散台球图最大熵的混合率
Statistical aspects of mean field coupled intermittent maps
平均场耦合间歇图的统计方面
Globally Coupled Anosov Diffeomorphisms: Statistical Properties
全局耦合 Anosov 微分同态:统计特性
Map Lattices Coupled by Collisions: Hitting Time Statistics and Collisions Per Lattice Unit
由碰撞耦合的地图晶格:每个晶格单元的命中时间统计和碰撞
  • DOI:
    10.1007/s00023-022-01164-2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bahsoun W
  • 通讯作者:
    Bahsoun W
Quenched decay of correlations for nonuniformly hyperbolic random maps with an ergodic driving system
  • DOI:
    10.1088/1361-6544/acd220
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    José F. Alves;Wael Bahsoun;Marks Ruziboev;P. Varandas
  • 通讯作者:
    José F. Alves;Wael Bahsoun;Marks Ruziboev;P. Varandas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wael Bahsoun其他文献

Weakly Convex and Concave Random Maps with Position Dependent Probabilities
具有位置相关概率的弱凸凹随机映射
  • DOI:
    10.1081/sap-120024700
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wael Bahsoun;P. Góra
  • 通讯作者:
    P. Góra
Variance Continuity for Lorenz Flows
  • DOI:
    10.1007/s00023-020-00913-5
  • 发表时间:
    2020-05-02
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Wael Bahsoun;Ian Melbourne;Marks Ruziboev
  • 通讯作者:
    Marks Ruziboev
Metastability of certain intermittent maps
某些间歇图的亚稳定性
  • DOI:
    10.1088/0951-7715/25/1/107
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Wael Bahsoun;S. Vaienti
  • 通讯作者:
    S. Vaienti
Escape rates formulae and metastablilty for randomly perturbed maps
随机扰动地图的逃逸率公式和亚稳定性
  • DOI:
    10.1088/0951-7715/26/5/1415
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Wael Bahsoun;S. Vaienti
  • 通讯作者:
    S. Vaienti
Mixing rates and limit theorems for random intermittent maps
随机间歇映射的混合率和极限定理
  • DOI:
    10.1088/0951-7715/29/4/1417
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Wael Bahsoun;C. Bose
  • 通讯作者:
    C. Bose

Wael Bahsoun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Conference: CIRM 2024: Operators on analytic function spaces
会议:CIRM 2024:分析函数空间的算子
  • 批准号:
    2346736
  • 财政年份:
    2024
  • 资助金额:
    $ 49.75万
  • 项目类别:
    Standard Grant
Invariant Rings, Frobenius, and Differential Operators
不变环、弗罗贝尼乌斯和微分算子
  • 批准号:
    2349623
  • 财政年份:
    2024
  • 资助金额:
    $ 49.75万
  • 项目类别:
    Continuing Grant
Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
  • 批准号:
    2348797
  • 财政年份:
    2024
  • 资助金额:
    $ 49.75万
  • 项目类别:
    Standard Grant
Development of a distributed, on-site, solar array life cycle management solution to reduce the lifetime cost of ownership of solar arrays for public sector operators
开发分布式现场太阳能电池阵列生命周期管理解决方案,以降低公共部门运营商太阳能电池阵列的生命周期拥有成本
  • 批准号:
    10113860
  • 财政年份:
    2024
  • 资助金额:
    $ 49.75万
  • 项目类别:
    SME Support
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
  • 批准号:
    23K17655
  • 财政年份:
    2023
  • 资助金额:
    $ 49.75万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Auto-compact: AI-powered quality control system for automotive OEMs and Finished Vehicle Logistics (FVL) operators
Auto-compact:面向汽车原始设备制造商和整车物流 (FVL) 运营商的人工智能质量控制系统
  • 批准号:
    83003000
  • 财政年份:
    2023
  • 资助金额:
    $ 49.75万
  • 项目类别:
    Innovation Loans
Optimising CNC Machine Tool Coolant Fluid condition to prolong usage and efficiency of an expensive essential resource thereby reducing cost, improving production quality and protecting operators using a unique and innovative Coolant Monitoring Analyser
使用独特和创新的冷却液监测分析仪优化数控机床冷却液条件,延长昂贵的重要资源的使用时间和效率,从而降低成本、提高生产质量并保护操作员
  • 批准号:
    10075142
  • 财政年份:
    2023
  • 资助金额:
    $ 49.75万
  • 项目类别:
    Grant for R&D
III: Medium: Linear Algebra Operators in Databases to Support Analytic and Machine-Learning Workloads
III:中:数据库中的线性代数运算符支持分析和机器学习工作负载
  • 批准号:
    2312991
  • 财政年份:
    2023
  • 资助金额:
    $ 49.75万
  • 项目类别:
    Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
  • 批准号:
    2246031
  • 财政年份:
    2023
  • 资助金额:
    $ 49.75万
  • 项目类别:
    Standard Grant
Homological approaches to differential forms, differential operators, and transfer of algebra structures
微分形式、微分算子和代数结构传递的同调方法
  • 批准号:
    2302198
  • 财政年份:
    2023
  • 资助金额:
    $ 49.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了