Spins and superconducting circuits for advanced spectroscopy (SpinSUPER)

用于高级光谱学的自旋和超导电路 (SpinSUPER)

基本信息

  • 批准号:
    EP/W005794/1
  • 负责人:
  • 金额:
    $ 135.46万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Magnetic resonance is one of the most well established and widely used tools for studying molecules and materials in science, medicine and metrology: from magnetic resonance imaging (MRI) in hospitals, to bench-top instruments used for industrial quality assurance monitoring, to advanced spectroscopy used to push the boundaries of understanding in many fields in science. The most common magnetic resonance technique addresses the nuclei that are found in all atoms; a related and very important variant is electron spin resonance (ESR), which addresses unpaired electrons found in large number of molecules and materials. In recent years, ESR spectroscopy has contributed, for instance, to the discovery of a room-temperature diamond MASER and long-wavelength photosynthesis, as well as studies of primitive organic matter in extra-terrestrial rocks or evaluating materials for quantum technologies. Electron spins are naturally found in many biological systems, such as on metal centres that are found within mechanistically key locations in enzymes, but can also be introduced to targeted locations in molecules using spin-labels.Despite these successful and wide-ranging uses, the sensitivity of ESR is a critical bottleneck for many important applications. For example, the limited sensitivity may require long signal averaging times (several days) to obtain statistically meaningful data - in many applications, this makes certain studies impractical, or else highly limited in scope. Recent developments, in many cases influenced by advances in superconducting quantum technologies, have shown that under very specific conditions, large improvements in ESR sensitivity are possible, harnessing new types of microwave amplifier and ESR resonator. Our goal is to take inspiration from such results and develop them in a more general manner that can be applied to practical open questions. In this manner, we will be able to deliver advances in the specific systems studied in this proposal, as well as show the wider ESR community how such techniques can be broadly applied in practice. As an illustration, we have recently shown in a collaborative work how cryogenic amplifiers can be introduced into the ESR detection circuit to enhance the signal to noise ratio, reducing the measurement time by almost a factor of 100, compared to typical set-ups. In this project, we will develop new technologies and methods to enhance the sensitivity in ESR and open up entirely new ways of performing ESR measurements. We will apply these to a number of important systems, including (1) Respiratory complex I, an essential enzyme that contributes approximately 40% to ATP synthesis and whose dysfunction is associated with numerous disorders and with ageing but whose energy-coupling mechanism, which involves radicals, is yet unclear; (2) Photosynthetic complex I, an enzyme that can lead to increased ATP production and is hence of interest for agriculture e.g. to increase crop yields, but whose mechanism - which involves numerous paramagnetic intermediates - is poorly understood; (3) Two enzymes essential for biological methane production; (4) Near-surface spins in materials that are being studied for applications in quantum technologies. SpinSUPER combines the complementary expertise in the groups of Roessler (Imperial) on the manipulation of complex proteins with multiple redox-active centres to investigate their mechanisms through the application of pulse ESR techniques, and that of Morton (UCL) on superconducting micro-resonators, micro-resonator design and modelling, and novel microwave circuits for enhanced ESR. It promises to redefine the state-of-the-art in ESR instrumentation and methodology, with a focus on practical spin systems. SpinSUPER will push new frontiers for ESR, for example with ESR at the single-cell level, or simultaneous multi-frequency ESR, while being firmly targeted at addressing open scientific questions in the field of ESR.
磁共振是在科学、医学和计量学中研究分子和材料的最成熟和广泛使用的工具之一:从医院的磁共振成像(MRI),到用于工业质量保证监测的台式仪器,再到用于推动许多科学领域理解界限的先进光谱学。最常见的磁共振技术可以探测所有原子中的原子核;一个相关且非常重要的变体是电子自旋共振(ESR),它解决了在大量分子和材料中发现的不成对电子。例如,近年来,ESR光谱学在发现室温钻石微波激射器和长波长光合作用,以及研究地外岩石中的原始有机物质或评估量子技术的材料方面做出了贡献。电子自旋在许多生物系统中自然存在,例如在酶的机械关键位置上发现的金属中心,但也可以使用自旋标签引入分子中的目标位置。尽管有这些成功和广泛的应用,但ESR的灵敏度是许多重要应用的关键瓶颈。例如,有限的灵敏度可能需要较长的信号平均时间(几天)才能获得统计上有意义的数据——在许多应用中,这使得某些研究不切实际,或者在范围上受到高度限制。在许多情况下,受超导量子技术进步的影响,最近的发展表明,在非常特定的条件下,利用新型微波放大器和ESR谐振器,可以大幅提高ESR灵敏度。我们的目标是从这些结果中获得灵感,并以一种更普遍的方式发展它们,从而可以应用于实际的开放式问题。通过这种方式,我们将能够在本提案中研究的特定系统中取得进展,并向更广泛的ESR社区展示这些技术如何在实践中得到广泛应用。作为一个例子,我们最近在一项合作工作中展示了如何将低温放大器引入ESR检测电路,以提高信噪比,与典型设置相比,将测量时间缩短近100倍。在这个项目中,我们将开发新的技术和方法来提高ESR的灵敏度,并开辟进行ESR测量的全新途径。我们将把这些应用于一些重要的系统,包括:(1)呼吸复合体I,一种必需的酶,贡献了大约40%的ATP合成,其功能障碍与许多疾病和衰老有关,但其涉及自由基的能量耦合机制尚不清楚;(2)光合复合体I,一种可以增加ATP产量的酶,因此对农业有兴趣,例如提高作物产量,但其机制-涉及许多顺磁中间体-知之甚少;(3)生物产甲烷必需的两种酶;(4)正在研究用于量子技术应用的材料中的近表面自旋。SpinSUPER结合了Roessler(帝国理工大学)在操纵具有多个氧化还原活性中心的复杂蛋白质方面的互补专业知识,通过应用脉冲ESR技术来研究其机制,以及Morton (UCL)在超导微谐振器,微谐振器设计和建模以及用于增强ESR的新型微波电路方面的专业知识。它承诺重新定义最先进的ESR仪器和方法,重点是实用的自旋系统。SpinSUPER将推动ESR的新领域,例如单细胞水平的ESR,或同时多频ESR,同时坚定地致力于解决ESR领域的开放性科学问题。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Q-band EPR cryoprobe.
Q 波段 EPR 冷冻探针。
  • DOI:
    10.1016/j.jmr.2023.107573
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kalendra V
  • 通讯作者:
    Kalendra V
Operando film-electrochemical EPR spectroscopy tracks radical intermediates in surface-immobilized catalysts
  • DOI:
    10.1038/s41557-024-01450-y
  • 发表时间:
    2024-02-14
  • 期刊:
  • 影响因子:
    21.8
  • 作者:
    Seif-Eddine,Maryam;Cobb,Samuel J.;Roessler,Maxie M.
  • 通讯作者:
    Roessler,Maxie M.
Probing spin dynamics of ultra-thin van der Waals magnets via photon-magnon coupling.
  • DOI:
    10.1038/s41467-023-38322-x
  • 发表时间:
    2023-05-05
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Zollitsch, Christoph W.;Khan, Safe;Nam, Vu Thanh Trung;Verzhbitskiy, Ivan A.;Sagkovits, Dimitrios;O'Sullivan, James;Kennedy, Oscar W.;Strungaru, Mara;Santos, Elton J. G.;Morton, John J. L.;Eda, Goki;Kurebayashi, Hidekazu
  • 通讯作者:
    Kurebayashi, Hidekazu
X- and Q-band EPR with cryogenic amplifiers independent of sample temperature
带有低温放大器的 X 和 Q 波段 EPR,与样品温度无关
  • DOI:
    10.1016/j.jmr.2022.107356
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Kalendra V
  • 通讯作者:
    Kalendra V
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maxie Roessler其他文献

Maxie Roessler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maxie Roessler', 18)}}的其他基金

PEPR - A centre for Pulse Electron Paramagnetic Resonance spectroscopy at Imperial College
PEPR - 帝国理工学院脉冲电子顺磁共振波谱中心
  • 批准号:
    EP/T031425/1
  • 财政年份:
    2020
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Research Grant
How does respiratory complex I pumps protons? Finding the missing link using EPR spectroscopy.
呼吸复合体 I 如何泵送质子?
  • 批准号:
    EP/M024393/1
  • 财政年份:
    2015
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Research Grant

相似海外基金

A prototype interface between neutral-atom quantum processors and superconducting circuits
中性原子量子处理器和超导电路之间的原型接口
  • 批准号:
    EP/Y022688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Research Grant
Superconducting Circuits for Error-Resilient Quantum Computers
用于容错量子计算机的超导电路
  • 批准号:
    DE240101033
  • 财政年份:
    2024
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Discovery Early Career Researcher Award
EAGER: Quantum Manufacturing: Scaling Quantum Photonic Circuits with Integrated Superconducting Detectors by 100×
EAGER:量子制造:使用集成超导探测器将量子光子电路扩展 100 倍
  • 批准号:
    2240501
  • 财政年份:
    2023
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Standard Grant
Implementing Strategies for Minimizing Errors in Superconducting Circuits for Quantum Computation
实施最小化量子计算超导电路误差的策略
  • 批准号:
    23KF0084
  • 财政年份:
    2023
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of an oscillator-based true random number generator using superconducting single flux quantum circuits
使用超导单通量量子电路开发基于振荡器的真随机数发生器
  • 批准号:
    23K11042
  • 财政年份:
    2023
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Surface and Interface Engineering for Superconducting Quantum Circuits
超导量子电路的表面和界面工程
  • 批准号:
    LP210200636
  • 财政年份:
    2023
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Linkage Projects
High-Performance Machine Learning Computing Using Non-deterministic Superconducting Circuits
使用非确定性超导电路的高性能机器学习计算
  • 批准号:
    23H03365
  • 财政年份:
    2023
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A versatile multi-project cleanroom fabrication process for superconducting quantum circuits
用于超导量子电路的多功能多项目洁净室制造工艺
  • 批准号:
    576748-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Alliance Grants
CAREER: Synthetic quantum materials in superconducting circuits
职业:超导电路中的合成量子材料
  • 批准号:
    2145323
  • 财政年份:
    2022
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Continuing Grant
Study on superconducting spintronics memory elements and their application to programmable logic circuits
超导自旋电子学存储元件及其在可编程逻辑电路中的应用研究
  • 批准号:
    22K04226
  • 财政年份:
    2022
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了