Millimetre-wave and Terahertz On-chip Circuit Test Cluster for 6G Communications and Beyond (TIC6G)
适用于 6G 及以上通信的毫米波和太赫兹片上电路测试集群 (TIC6G)
基本信息
- 批准号:EP/W006448/1
- 负责人:
- 金额:$ 335.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The internet transmits data with a rate of hundreds of Terabits per second (Tbit/s), consumes 9% of the worldwide produced electrical energy and is growing at a rate of 20 - 30 % per year. One single carrier produced by a laser diode, can provide the data transmission of 26 Tbit/s. By combining optical carriers with TeraHertz (THz) waves as well, data rates of several Tbit/s can be transmitted over a wireless link, which will enable hybrid optical/THz wireless links. The next/sixth generation (6G) communication network is expected to be commercialised from 2030. 6G will generate greater diffusion and provide technical platforms to solve social, economic and humanity issues with higher data rates, wider bandwidth and lower latency. The urgency and challenges require the development of revolutionary technologies to meet the projected performance levels. These developments are captured in the recent beyond-5G roadmaps from research forums such as WWRF, NetWorld2020, H2020 5G-PPP, 6G-Summit, USA NSF, industry organizations including 3GPP, IEEE, ETSI, ITU-R, ITU-T, and spectrum regulatory forums e.g., FCC, ECC, OFCOM, WRC'19 [https://doi.org/10.3390/electronics9020351].At the University of Glasgow (UofG), more than 10 research groups in James Watt School of Engineering are working on enabling technologies in the area of wireless communications, optical networking and a mix of fibre optics, millimetre wave and ultrafast THz wireless links. Such concepts require novel semiconductor devices and circuits that must be characterised at an early stage of development, i.e. at chip level, once they are manufactured at our James Watt Nanofabrication Centre (JWNC). To support this research, this project aims to establish an on-chip device and integrated circuit test cluster together with a carrier independent, ultra-high data transmission rate and processing system to measure key performance indicators in both the user and control planes. The proposed Test Cluster is the first of this kind in the world that allows complex signal and waveforms directly deployed to devices under test on chip. This will trigger new device concepts as well as enable development of transceiver architectures. This work will potentially create industry game changers.The Cluster consists of three key modules: waveform generation, signal analysis, and device characterisation. The three modules can operate individually or collectively and are built around a semi-automated probe station and an optical bench to allow on-chip probing, quasi-optics coupling and over-the-air characterisation setups. The waveform generation module can generate CW and wideband high-speed complex waveforms (>40 GHz) to meet the requirements of future communications for frequencies up to 1.1 THz. The signal analysis module can perform spectrum analysis of signal sources as well as real-time signal analysis on ultra-wideband, high data rate, complex signals in time domain for frequencies up to 1.1 THz. The device characterisation module permits continuous/pulsed current-voltage, network analysis and active load-pull measurements up to 1.1 THz. We are targeting measurements in hybrid transmission systems of several hundred Gigabits per second (Gbit/s). To allow other external groups and industry to use this unique measurement system for their research and development, a key aspect of the new measurement system is the possibility for remote control of all parameters via the Internet, which will enable use of the measurement system without the need to move the measurement system around and allow remote access to real-time data.
互联网以每秒数百吨(TBIT/s)的数百辆速率传输数据,消耗了9%的全球产生的电能,并且每年以20-30%的速度增长。一个由激光二极管产生的单个载体可以提供26 Tbit/s的数据传输。通过将光载体与Terahertz(THZ)波相结合,可以通过无线链路传输多个TBIT/S的数据速率,这将启用混合光学/THZ无线链路。预计下一代/第六代(6G)的通信网络将从2030年开始商业化。6G将产生更大的扩散,并提供技术平台,以较高的数据速率,更宽的带宽和较低的延迟来解决社会,经济和人类问题。紧迫性和挑战需要开发革命性技术,以达到预计的绩效水平。这些发展是在WWRF,NetWorld2020,H2020 5G-PPP,6G-Summit,美国NSF等研究论坛的最新5G路线图中捕获的,NSF,包括3GPP,IEEE,ETSI,ETSI,ETSI,ITU-R,ITU-R,ITU-T,ITU-T,ITU-T,ITU-T和SPECTRUM调节论坛,例如[https://doi.org/10.3390/electronics9020351]在格拉斯哥大学(UOFG)中,詹姆斯·瓦特工程学院的10多个研究小组正在从事无线通信领域的启用技术,光纤网络和光纤,毫米级别,无用的链接链接。这样的概念需要新颖的半导体设备和电路,这些设备和电路必须在开发的早期阶段(即芯片水平)进行表征,一旦我们的詹姆斯·瓦特纳米制造中心(JWNC)制造了它们。为了支持这项研究,该项目旨在建立一个片上设备和集成电路测试集群以及载体独立,超高的数据传输速率和处理系统,以衡量用户和控制平面中的关键性能指标。提出的测试群集是世界上第一个,它允许将复杂的信号和波形直接部署到芯片上正在测试的设备上。这将触发新的设备概念,并启用收发器体系结构的开发。这项工作可能会创建行业改变者。该集群由三个关键模块组成:波形生成,信号分析和设备表征。这三个模块可以单独或集体运行,并围绕一个半自动化的探针站和光学台面构建,以允许芯片探测,准选项耦合和空中表征设置。波形生成模块可以生成CW和宽带高速复合波形(> 40 GHz),以满足未来通信的要求,最高为1.1 THz。信号分析模块可以对信号源进行频谱分析以及超宽带,高数据速率,时域中的复杂信号的实时信号分析,最高为1.1 THz。设备表征模块允许连续/脉冲电流电压,网络分析和高达1.1 THz的主动载荷测量值。我们正在针对每秒几百吉比特(GBIT/s)的混合传输系统中的测量。为了允许其他外部群体和行业使用此独特的测量系统进行研究和开发,新测量系统的关键方面是通过Internet远程控制所有参数的可能性,这将使您能够使用测量系统,而无需将测量系统移动到周围并允许远程访问实时数据。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
22Gbps/80cm Low-Cost THz Wireless System
22Gbps/80cm 低成本太赫兹无线系统
- DOI:10.23919/eumc50147.2022.9784247
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wang J
- 通讯作者:Wang J
Accurate Quantum Transport Modeling of High-Speed In 0.53 Ga 0.47 As/AlAs Double-Barrier Resonant Tunneling Diodes
0.53 Ga 0.47 As/AlAs 双势垒谐振隧道二极管高速精确量子输运建模
- DOI:10.1109/ted.2022.3178360
- 发表时间:2022
- 期刊:
- 影响因子:3.1
- 作者:Cimbri D
- 通讯作者:Cimbri D
In 0.53 Ga 0.47 As/AlAs Double-Barrier Resonant Tunnelling Diodes With High-Power Performance in the Low-Terahertz Band
在低太赫兹频段具有高功率性能的 0.53 Ga 0.47 As/AlAs 双势垒谐振隧道二极管
- DOI:10.1109/iwmts54901.2022.9832442
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Cimbri D
- 通讯作者:Cimbri D
An Overview of Terahertz Imaging with Resonant Tunneling Diodes
- DOI:10.3390/app12083822
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Jue Wang;M. Naftaly;E. Wasige
- 通讯作者:Jue Wang;M. Naftaly;E. Wasige
A High-Power InP Resonant Tunnelling Diode Heterostructure for 300-GHz Oscillator Sources
用于 300 GHz 振荡器源的高功率 InP 谐振隧道二极管异质结构
- DOI:10.23919/eumic54520.2022.9923482
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Cimbri D
- 通讯作者:Cimbri D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Wasige其他文献
Edward Wasige的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Wasige', 18)}}的其他基金
D-band wireless backbone with fiber data rate
具有光纤数据速率的 D 频段无线主干网
- 批准号:
EP/S009442/1 - 财政年份:2019
- 资助金额:
$ 335.06万 - 项目类别:
Research Grant
Novel GaN Power Devices and Packaging Technologies for 300 degC Ambient Operation
适用于 300 摄氏度环境操作的新型 GaN 功率器件和封装技术
- 批准号:
EP/R024413/1 - 财政年份:2018
- 资助金额:
$ 335.06万 - 项目类别:
Research Grant
Compact MMIC Terahertz Sources in the 0.1 - 1 THz Range
0.1 - 1 THz 范围内的紧凑型 MMIC 太赫兹源
- 批准号:
EP/J019747/1 - 财政年份:2013
- 资助金额:
$ 335.06万 - 项目类别:
Research Grant
相似国自然基金
海浪驱动压电钛酸钡陶瓷涂层在船体抗污防腐中的作用机制
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
- 批准号:82371631
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
海浪驱动压电钛酸钡陶瓷涂层在船体抗污防腐中的作用机制
- 批准号:52371346
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
- 批准号:32300748
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于气-海-浪-冰区域耦合模式的海浪对南极海冰影响研究
- 批准号:42376237
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Spatial light modulator by MEMS reconfigurable metamaterial for Terahertz wave
太赫兹波MEMS可重构超材料空间光调制器
- 批准号:
23K20256 - 财政年份:2024
- 资助金额:
$ 335.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of GaN quantum cascade laser to cover the unexplored terahertz wave frequencies
开发GaN量子级联激光器以覆盖未探索的太赫兹波频率
- 批准号:
24K00953 - 财政年份:2024
- 资助金额:
$ 335.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 335.06万 - 项目类别:
Standard Grant
New Design and Manufacture Technologies for High-Performance Millimetre-Wave and Terahertz Waveguide Devices for Space and Terrestrial Communications
用于空间和地面通信的高性能毫米波和太赫兹波导器件的新设计和制造技术
- 批准号:
EP/Y016580/1 - 财政年份:2023
- 资助金额:
$ 335.06万 - 项目类别:
Fellowship
Study of terahertz-wave kinetic inductance detectors with superconducting metamaterials
超导超材料太赫兹波动感电感探测器研究
- 批准号:
22K18991 - 财政年份:2022
- 资助金额:
$ 335.06万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)