Novel GaN Power Devices and Packaging Technologies for 300 degC Ambient Operation
适用于 300 摄氏度环境操作的新型 GaN 功率器件和封装技术
基本信息
- 批准号:EP/R024413/1
- 负责人:
- 金额:$ 73.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal straddles two key topics, High Temperature (HT) Electronics and Power Electronics. Present electronics is silicon-based and therefore limited to maximum operating junction temperatures of less than 150 degC, which gives a maximum ambient ceiling of around 105 degC. Commercially available components (rated for operation at elevated temperature) are in the range of 210-225 degC maximum. Therefore electronics for the automotive sector, especially for the emerging electric vehicles, and the aerospace sector is kept as far from the engine as possible to minimise the cooling requirements. Similarly, oil and gas engineers, attempting to harvest the fossil fuels (which we are still highly dependent on), face exactly the same problem with the electronics that are driving the drilling tool motor. Power electronic devices delivering hundreds of Watts of power to the motor must do so in an ambient that can exceed 225 degC, operating 10 km or deeper under the ground with only slurry pumped from the surface to cool the devices (temperature and time restrictions apply). The potential benefit for having electronics operating in these environments without cooling is huge, leading to greater efficiency, reliability, saving space, weight and importantly cost.Power Electronics plays a very important role in the electrical power conversion and is widely used in transportation, renewable energy and utility applications. By 2020, 80% of electrical power will go through power electronics converters somewhere between generation, transmission, distribution and consumption. So high-efficiency, high-power-density and high-reliability are very important for power electronics converters. The conventional Si-based power electronics devices have, however, reached the limit of their potential (after almost 40 years of development). The emergence of wide-bandgap material such as silicon carbide (SiC) and gallium nitride (GaN) based devices has brought in clear opportunities enabling compact, more efficient power converters, operating at higher voltages, frequencies and powers, and harsh environments (e.g. 300 degC ambients) and so can meet the increasing demand by a range of existing and emerging applications. Advances in GaN device structure and in process technology to significantly improve performance are pushing the adoption of these new power devices for very high voltage (>600 V), high temperature (>125 degC) and high power (mainly 6-40kW) applications. This trend is set to continue as the technology evolves. For 600V operation, a threshold voltage +3V would be desirable (well above the +1.6V maximum now achievable) for improved noise immunity. Also, presently, the device architecture compromises converter performance, e.g. in a half-bridge power converter module the current through the top switch transistor is modulated by its floating substrate potential. When this deficiency can be solved, the two transistors of the basic building block of all power electronic systems can be manufactured as a single integrated circuit reducing switching path inductance thus allowing faster switching and smaller cheaper passive components, increasing switch yield per wafer for the small devices targeted and reducing packaging costs.Reliable packaging methods for the new devices and ICs are indispensable for the required testing during development, and for the eventual exploitation in industrial HPHT applications. The required materials and joining methods at >300 degC ambient environments are completely different from those of conventional electronics, and need to be developed. These challenges with HT electronics and GaN switches/packaging form the main motivations for this project.The project brings together the UK's key academic and industrial expertise to work in synergy to investigate HT packaging and GaN power devices to realise a robust and high performance High Power High Temperature (HPHT) technology.
该提案跨越了两个关键主题:高温(HT)电子和电力电子设备。当前的电子基于硅,因此仅限于最高工作连接温度小于150度,最大的环境天花板约为105度。市售的组件(在升高温度下进行操作)在210-225度最大范围内。因此,汽车领域的电子设备,尤其是对于新兴的电动汽车和航空航天部门的电子设备,远离发动机的远处,以最大程度地减少冷却需求。同样,石油和天然气工程师试图收获化石燃料(我们仍然高度依赖化石燃料),与驱动钻井工具电动机的电子产品完全相同。向电动机传递数百瓦电源的电力电子设备必须在超过225度的环境中进行操作,在地面下运行10 km或更深层,只有从表面泵出的浆液才能冷却设备(温度和时间限制)。在不冷却的情况下使电子产品在这些环境中运行的潜在好处是巨大的,从而提高了效率,可靠性,节省空间,重量以及重要的是成本。电力电子产品在电力转换中起着非常重要的作用,并且在运输,可再生能源和公用事业中广泛使用。到2020年,80%的电力将通过电源电子转换器,在发电,传输,分销和消耗之间。因此,高效率,高功率密度和高可靠性对于电力电子转换器非常重要。但是,基于SI的常规电力电子设备已达到其潜力的极限(经过将近40年的开发)。基于碳化硅(SIC)和基于氮化岩(GAN)的设备等宽带gap材料的出现带来了明确的机会,可以实现紧凑,更有效的电力转换器,在更高的电压,频率和幂和强度的环境中运行,以及强烈的环境(例如300度的设备)(例如,300度的设备),因此可以满足现有范围的需求量,并且可以满足现有范围的需求。 GAN设备结构和过程技术的进步显着提高性能,正在推动这些新电源设备的采用,以实现非常高的电压(> 600 V),高温(> 125摄氏度)和高功率(主要是6-40kW)应用。随着技术的发展,这种趋势将继续。对于600V操作,对于提高噪声免疫,阈值电压 +3V是可取的(远高于现在可实现的 +1.6V)。同样,目前,设备体系结构损害了转换器性能,例如在半桥功率转换器模块中,通过顶部开关晶体管的电流由其浮动基板电势调节。当可以解决这种不足时,所有电力电子系统基本构件的两个晶体管都可以作为单个集成电路降低开关路径电感的电感,从而可以更快地开关和较小的被动组件,从而使小型设备的每次晶片增加晶圆的晶圆,并为包装的开发和可容纳新的设备的构图和降低构图,以实现新的设备和索引。工业HPHT应用中的剥削。在> 300度环境环境下,所需的材料和连接方法与常规电子产品完全不同,需要开发。 HT电子和GAN开关/包装构成了该项目的主要动机。该项目汇集了英国的主要学术和工业专业知识,以协同工作,以调查HT包装和GAN Power Devices,以实现强劲而高性能的高性能高功率高温(HPHT)技术。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AIGaN/GaN HEMT with Distributed Gate for Improved Thermal Performance
具有分布式栅极的 AIGaN/GaN HEMT 可提高热性能
- DOI:10.23919/eumic.2018.8539896
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Elksne M
- 通讯作者:Elksne M
A Planar Distributed Channel AlGaN/GaN HEMT Technology
平面分布沟道AlGaN/GaN HEMT技术
- DOI:10.1109/ted.2019.2907152
- 发表时间:2019
- 期刊:
- 影响因子:3.1
- 作者:Elksne M
- 通讯作者:Elksne M
Thick GaN Capped AlGaN/GaN HEMTs for Reduced Surface Effects
厚 GaN 盖帽 AlGaN/GaN HEMT 可减少表面效应
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Elksne, M.
- 通讯作者:Elksne, M.
Heavily Doped n++ GaN Cap Layer AlN/GaN Metal Oxide Semiconductor High Electron Mobility Transistor
重掺杂 n GaN 盖层 AlN/GaN 金属氧化物半导体高电子迁移率晶体管
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0.5
- 作者:Karami K.
- 通讯作者:Karami K.
Robust sub-100 nm T-Gate fabrication process using multi-step development
- DOI:10.1016/j.mne.2023.100211
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Kaivan Karami;Aniket Dhongde;Huihua Cheng;P. Reynolds;Bojja Aditya Reddy;D. Ritter;Chong-Shuo Li;E. Wasige;S. Thoms
- 通讯作者:Kaivan Karami;Aniket Dhongde;Huihua Cheng;P. Reynolds;Bojja Aditya Reddy;D. Ritter;Chong-Shuo Li;E. Wasige;S. Thoms
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Wasige其他文献
Edward Wasige的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Wasige', 18)}}的其他基金
Millimetre-wave and Terahertz On-chip Circuit Test Cluster for 6G Communications and Beyond (TIC6G)
适用于 6G 及以上通信的毫米波和太赫兹片上电路测试集群 (TIC6G)
- 批准号:
EP/W006448/1 - 财政年份:2022
- 资助金额:
$ 73.06万 - 项目类别:
Research Grant
D-band wireless backbone with fiber data rate
具有光纤数据速率的 D 频段无线主干网
- 批准号:
EP/S009442/1 - 财政年份:2019
- 资助金额:
$ 73.06万 - 项目类别:
Research Grant
Compact MMIC Terahertz Sources in the 0.1 - 1 THz Range
0.1 - 1 THz 范围内的紧凑型 MMIC 太赫兹源
- 批准号:
EP/J019747/1 - 财政年份:2013
- 资助金额:
$ 73.06万 - 项目类别:
Research Grant
相似国自然基金
GaN基电泵浦激光器结构微米线生长与器件研制
- 批准号:62374062
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
甘氨脱氧胆酸通过FXR-FABP6促进雄激素转化代谢而改善PCOS的分子机制研究
- 批准号:82371643
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于胆汁酸-FXR反馈环路探究草甘膦致肝脏脂代谢紊乱的机制
- 批准号:42307547
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丝氨酸蛋白酶PR3调控肾足细胞损伤介导糖尿病肾脏病的作用及苓桂术甘汤效应机制研究
- 批准号:82374171
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
GaN基WGM光学微腔的外延剥离及其垂直注入电泵浦激光器的研制和性能调控
- 批准号:12374072
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Highly integrated GaN power converter to calm the interference
高集成GaN功率转换器,平息干扰
- 批准号:
EP/Y002261/1 - 财政年份:2024
- 资助金额:
$ 73.06万 - 项目类别:
Research Grant
Vertical GaN-on-Si membrane power transistors: Efficient power electronics for mass-market applications (VertiGaN)`
垂直硅基氮化镓薄膜功率晶体管:面向大众市场应用的高效电力电子器件 (VertiGaN)`
- 批准号:
EP/X014924/1 - 财政年份:2024
- 资助金额:
$ 73.06万 - 项目类别:
Research Grant
Robust and intelligent parallel-connected GaN power devices
稳健且智能的并联 GaN 功率器件
- 批准号:
24K17265 - 财政年份:2024
- 资助金额:
$ 73.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Digital Active Gate Drive System for SiC MOSFETs toward Integration of Power Conversion Circuits
面向功率转换电路集成化的 SiC MOSFET 数字有源栅极驱动系统的开发
- 批准号:
22KJ1702 - 财政年份:2023
- 资助金额:
$ 73.06万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Enhancing GaN-on-Si high electron mobility transistor technology for high frequency and high power applications
职业:增强用于高频和高功率应用的硅基氮化镓高电子迁移率晶体管技术
- 批准号:
2239302 - 财政年份:2023
- 资助金额:
$ 73.06万 - 项目类别:
Continuing Grant