Novel GaN Power Devices and Packaging Technologies for 300 degC Ambient Operation

适用于 300 摄氏度环境操作的新型 GaN 功率器件和封装技术

基本信息

  • 批准号:
    EP/R024413/1
  • 负责人:
  • 金额:
    $ 73.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

This proposal straddles two key topics, High Temperature (HT) Electronics and Power Electronics. Present electronics is silicon-based and therefore limited to maximum operating junction temperatures of less than 150 degC, which gives a maximum ambient ceiling of around 105 degC. Commercially available components (rated for operation at elevated temperature) are in the range of 210-225 degC maximum. Therefore electronics for the automotive sector, especially for the emerging electric vehicles, and the aerospace sector is kept as far from the engine as possible to minimise the cooling requirements. Similarly, oil and gas engineers, attempting to harvest the fossil fuels (which we are still highly dependent on), face exactly the same problem with the electronics that are driving the drilling tool motor. Power electronic devices delivering hundreds of Watts of power to the motor must do so in an ambient that can exceed 225 degC, operating 10 km or deeper under the ground with only slurry pumped from the surface to cool the devices (temperature and time restrictions apply). The potential benefit for having electronics operating in these environments without cooling is huge, leading to greater efficiency, reliability, saving space, weight and importantly cost.Power Electronics plays a very important role in the electrical power conversion and is widely used in transportation, renewable energy and utility applications. By 2020, 80% of electrical power will go through power electronics converters somewhere between generation, transmission, distribution and consumption. So high-efficiency, high-power-density and high-reliability are very important for power electronics converters. The conventional Si-based power electronics devices have, however, reached the limit of their potential (after almost 40 years of development). The emergence of wide-bandgap material such as silicon carbide (SiC) and gallium nitride (GaN) based devices has brought in clear opportunities enabling compact, more efficient power converters, operating at higher voltages, frequencies and powers, and harsh environments (e.g. 300 degC ambients) and so can meet the increasing demand by a range of existing and emerging applications. Advances in GaN device structure and in process technology to significantly improve performance are pushing the adoption of these new power devices for very high voltage (>600 V), high temperature (>125 degC) and high power (mainly 6-40kW) applications. This trend is set to continue as the technology evolves. For 600V operation, a threshold voltage +3V would be desirable (well above the +1.6V maximum now achievable) for improved noise immunity. Also, presently, the device architecture compromises converter performance, e.g. in a half-bridge power converter module the current through the top switch transistor is modulated by its floating substrate potential. When this deficiency can be solved, the two transistors of the basic building block of all power electronic systems can be manufactured as a single integrated circuit reducing switching path inductance thus allowing faster switching and smaller cheaper passive components, increasing switch yield per wafer for the small devices targeted and reducing packaging costs.Reliable packaging methods for the new devices and ICs are indispensable for the required testing during development, and for the eventual exploitation in industrial HPHT applications. The required materials and joining methods at >300 degC ambient environments are completely different from those of conventional electronics, and need to be developed. These challenges with HT electronics and GaN switches/packaging form the main motivations for this project.The project brings together the UK's key academic and industrial expertise to work in synergy to investigate HT packaging and GaN power devices to realise a robust and high performance High Power High Temperature (HPHT) technology.
这项提议涉及两个关键主题,高温电子(HT)和电力电子。目前的电子器件是硅基的,因此限制在低于150摄氏度的最高工作结温度,这给出了大约105摄氏度的最大环境上限。商用组件(额定在高温下运行)在最高210-225摄氏度的范围内。因此,汽车行业的电子产品,特别是新兴的电动汽车和航空航天行业的电子产品,都尽量远离发动机,以最大限度地减少冷却要求。同样,试图获取化石燃料(我们仍然高度依赖化石燃料)的石油和天然气工程师,在驱动钻井工具马达的电子设备方面也面临着完全相同的问题。向电机输送数百瓦功率的电力电子设备必须在超过225摄氏度的环境中工作,在地下10公里或更深的地方工作,只从表面泵送泥浆来冷却设备(温度和时间限制)。在这些环境中,电子设备无需冷却就可以运行,其潜在的好处是巨大的,可以带来更高的效率、可靠性、节省空间、重量以及更重要的成本。电力电子在电力转换中起着非常重要的作用,广泛应用于交通、可再生能源和公用事业领域。到2020年,80%的电力将通过发电、输电、配电和用电之间的电力电子转换器。因此,高效率、高功率密度、高可靠性是电力电子变流器的重要组成部分。然而,传统的硅基电力电子器件已经达到了其潜力的极限(经过近40年的发展)。碳化硅(SIC)和氮化镓(GaN)等宽禁带材料的出现带来了明显的机遇,使紧凑型、更高效的功率转换器能够在更高的电压、频率和功率以及恶劣的环境(例如300℃气氛)下工作,因此可以满足一系列现有和新兴应用的日益增长的需求。GaN器件结构和工艺技术的进步显著提高了性能,推动了这些新型功率器件在超高电压(>600V)、高温(>125℃)和高功率(主要是6-40kW)应用中的采用。随着技术的发展,这一趋势将继续下去。对于600V操作,阈值电压+3V将是理想的(远高于现在可实现的+1.6V的最大值),以提高抗噪性。此外,目前,器件架构影响了转换器的性能,例如,在半桥功率转换器模块中,通过顶部开关晶体管的电流由其浮动衬底电势调制。当这一不足得到解决时,所有电力电子系统的基本构成块的两个晶体管可以被制造成单个集成电路,从而降低开关路径电感,从而允许更快的开关和更小的廉价无源元件,增加目标小器件的每片开关成品率并降低封装成本。新器件和IC的可靠封装方法对于开发过程中所需的测试以及最终在工业HPHT应用中的开发是必不可少的。在>300℃的环境下,所需的材料和连接方法与传统电子产品完全不同,需要开发。高温电子学和GaN开关/封装方面的这些挑战构成了该项目的主要动机。该项目汇集了英国关键的学术和工业专业知识,共同研究高温封装和GaN功率器件,以实现强大而高性能的高功率高温(HPHT)技术。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AIGaN/GaN HEMT with Distributed Gate for Improved Thermal Performance
具有分布式栅极的 AIGaN/GaN HEMT 可提高热性能
  • DOI:
    10.23919/eumic.2018.8539896
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elksne M
  • 通讯作者:
    Elksne M
A Planar Distributed Channel AlGaN/GaN HEMT Technology
平面分布沟道AlGaN/GaN HEMT技术
Thick GaN Capped AlGaN/GaN HEMTs for Reduced Surface Effects
厚 GaN 盖帽 AlGaN/GaN HEMT 可减少表面效应
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elksne, M.
  • 通讯作者:
    Elksne, M.
Heavily Doped n++ GaN Cap Layer AlN/GaN Metal Oxide Semiconductor High Electron Mobility Transistor
重掺杂 n GaN 盖层 AlN/GaN 金属氧化物半导体高电子迁移率晶体管
Investigation of Plasma Induced Etch Damage/Changes in AlGaN/GaN HEMTs
AlGaN/GaN HEMT 中等离子体诱导蚀刻损伤/变化的研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Wasige其他文献

Edward Wasige的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Wasige', 18)}}的其他基金

Millimetre-wave and Terahertz On-chip Circuit Test Cluster for 6G Communications and Beyond (TIC6G)
适用于 6G 及以上通信的毫米波和太赫兹片上电路测试集群 (TIC6G)
  • 批准号:
    EP/W006448/1
  • 财政年份:
    2022
  • 资助金额:
    $ 73.06万
  • 项目类别:
    Research Grant
D-band wireless backbone with fiber data rate
具有光纤数据速率的 D 频段无线主干网
  • 批准号:
    EP/S009442/1
  • 财政年份:
    2019
  • 资助金额:
    $ 73.06万
  • 项目类别:
    Research Grant
Compact MMIC Terahertz Sources in the 0.1 - 1 THz Range
0.1 - 1 THz 范围内的紧凑型 MMIC 太赫兹源
  • 批准号:
    EP/J019747/1
  • 财政年份:
    2013
  • 资助金额:
    $ 73.06万
  • 项目类别:
    Research Grant

相似国自然基金

异质结极化场局域调控机制与选区外延p-GaN HEMT研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于金刚石高效散热封装的高功率高压GaN器件研发与产业化
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
复合抗磨涂层仿生微结构化表面自润滑 金刚石砂轮的制备与其磨削单晶GaN基础 研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
新型自支撑GaN/二维GaSe范德华异质结垂直结构紫外光电探测器研究
  • 批准号:
    QZQN25F050009
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
GaN功率器件动态阈值不稳定诱导退化机理研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向无人机应用的增强型p-gate AlGaN/GaN HEMT高功率微波辐射效应及 机理研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
GaN基电子器件界面热输运机理研究
  • 批准号:
    2025JJ50045
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
免造影剂增强心脏CT技术:深度学习GAN与U-Net架构的融合应用
  • 批准号:
    2025JJ80644
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于GAN-PSO智能算法的高性能Mg-Mn系变形镁合金设计
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
大尺寸 Si 基 GaN 材料外延及功率器件开发关键技术
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Highly integrated GaN power converter to calm the interference
高集成GaN功率转换器,平息干扰
  • 批准号:
    EP/Y002261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.06万
  • 项目类别:
    Research Grant
Vertical GaN-on-Si membrane power transistors: Efficient power electronics for mass-market applications (VertiGaN)`
垂直硅基氮化镓薄膜功率晶体管:面向大众市场应用的高效电力电子器件 (VertiGaN)`
  • 批准号:
    EP/X014924/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.06万
  • 项目类别:
    Research Grant
Robust and intelligent parallel-connected GaN power devices
稳健且智能的并联 GaN 功率器件
  • 批准号:
    24K17265
  • 财政年份:
    2024
  • 资助金额:
    $ 73.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Enhancing GaN-on-Si high electron mobility transistor technology for high frequency and high power applications
职业:增强用于高频和高功率应用的硅基氮化镓高电子迁移率晶体管技术
  • 批准号:
    2239302
  • 财政年份:
    2023
  • 资助金额:
    $ 73.06万
  • 项目类别:
    Continuing Grant
Reliability Study and Failure Analysis of Wide Bandgap GaN Vertical Power Devices: From Materials to Devices
宽带隙GaN垂直功率器件的可靠性研究和失效分析:从材料到器件
  • 批准号:
    2210153
  • 财政年份:
    2022
  • 资助金额:
    $ 73.06万
  • 项目类别:
    Standard Grant
Development of lightly-tilted crystal face trench MOS channels toward the realization of ultra-low resistance GaN power devices
开发微倾斜晶面沟槽MOS沟道以实现超低电阻GaN功率器件
  • 批准号:
    22K14294
  • 财政年份:
    2022
  • 资助金额:
    $ 73.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
High-Power Coherent THz Source Based on GaN IMPATTs
基于 GaN IMPATT 的高功率相干太赫兹源
  • 批准号:
    22H00213
  • 财政年份:
    2022
  • 资助金额:
    $ 73.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Study on Leakage Electromagnetic Field Reduction of Wireless Power Transfer for Electric Vehicles Using GaN-Inverter
使用 GaN 逆变器减少电动汽车无线电力传输泄漏电磁场的研究
  • 批准号:
    22K14234
  • 财政年份:
    2022
  • 资助金额:
    $ 73.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Reliability Study and Failure Analysis of Wide Bandgap GaN Vertical Power Devices: From Materials to Devices
宽带隙GaN垂直功率器件的可靠性研究和失效分析:从材料到器件
  • 批准号:
    2302696
  • 财政年份:
    2022
  • 资助金额:
    $ 73.06万
  • 项目类别:
    Standard Grant
Development of GaN superjunction devices with pGaN ArF laser activation for high power application
开发用于高功率应用的具有 pGaN ArF 激光激活的 GaN 超结器件
  • 批准号:
    22K20438
  • 财政年份:
    2022
  • 资助金额:
    $ 73.06万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了