A Visual Analytics and Multi-Objective Optimisation Approach for Balancing Economic and Public Health Objectives through Compartmental Models

通过区室模型平衡经济和公共卫生目标的可视化分析和多目标优化方法

基本信息

  • 批准号:
    EP/W01226X/1
  • 负责人:
  • 金额:
    $ 23.57万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

Modelling of disease spread continues to play a crucial role in the response to the COVID-19 pandemic. There is light at the end of the tunnel with effective vaccines, but it will take until the summer of 2021 for distribution to be widespread, and re-vaccination may be an ongoing requirement. In the meantime, hybrid solutions are required to manage non-pharmaceutical interventions (NPI), that minimise the restrictions to our daily lives while suppressing transmission and maintaining the integrity of our healthcare systems.Realistic models are publicly available to predict the spread of the virus. Varying the parameters of these models can be used to represent tentative policy actions, and the consequences are deduced in simulations of the model. Typically, the main objective for identifying effective policy actions has been to reduce the infection rate. However, often there are multiple, potentially conflicting, objectives that require optimisation in parallel. For instance, we may want policies that reduce the hospital occupancy, while simultaneouslyreducing economic impacts. Our goal is to provide a generic visual analytics framework to explore the parameter space of complex models as well as the trade-offs between objectives to inform policy makers. Specifically:1. A scalable visual analytics framework for parameter space exploration of feasible regions of the parameter space for complex compartmental models in order to identify effective policy actions.2. Extend this framework to handle multiple objectives: reduction of transmission to high risk groups, overall cases and deaths, hospital costs, thresholds for circuit breakers, and economic factors.
疾病传播模型在应对COVID-19疫情方面继续发挥关键作用。有效疫苗的隧道尽头有光明,但要到2021年夏天才能广泛分发,重新接种疫苗可能是一项持续的要求。与此同时,我们需要混合解决方案来管理非药物干预措施(NPI),以最大限度地减少对我们日常生活的限制,同时抑制传播并保持我们医疗系统的完整性。改变这些模型的参数可以用来代表试探性的政策行动,并在模型的模拟中推导出的后果。通常,确定有效政策行动的主要目标是降低感染率。然而,通常有多个潜在冲突的目标需要并行优化。例如,我们可能希望政策能够减少医院的占用率,同时不可避免地减少经济影响。我们的目标是提供一个通用的可视化分析框架,以探索复杂模型的参数空间以及目标之间的权衡,以告知政策制定者。具体而言:1.一个可扩展的可视化分析框架,用于复杂房室模型参数空间可行区域的参数空间探索,以确定有效的政策措施。扩展该框架以处理多个目标:减少向高危人群的传播、总体病例和死亡、医院成本、断路器阈值和经济因素。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parallel Problem Solving from Nature - PPSN XVII - 17th International Conference, PPSN 2022, Dortmund, Germany, September 10-14, 2022, Proceedings, Part I
自然并行问题解决 - PPSN XVII - 第 17 届国际会议,PPSN 2022,德国多特蒙德,2022 年 9 月 10-14 日,会议记录,第一部分
  • DOI:
    10.1007/978-3-031-14714-2_7
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rahat A
  • 通讯作者:
    Rahat A
Addressing the Health Versus Economy Dilemma in Data-Driven Policymaking During a Pandemic
解决大流行期间数据驱动决策中的健康与经济困境
  • DOI:
    10.1145/3583133.3590652
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hotchkiss L
  • 通讯作者:
    Hotchkiss L
Extrema Graphs: Fitness Landscape Analysis to the Extreme!
极值图:健身景观分析到极致!
  • DOI:
    10.1145/3583133.3596343
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sadler S
  • 通讯作者:
    Sadler S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alma Rahat其他文献

Dimensions of Human-Machine Combination: Prompting the Development of Deployable Intelligent Decision Systems for Situated Clinical Contexts

Alma Rahat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Situation-aware Multi-sided Personalised Analytics in Spatial Crowdsourcing
空间众包中的态势感知多边个性化分析
  • 批准号:
    DP240100356
  • 财政年份:
    2024
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Discovery Projects
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311598
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
Towards an integrated analytics solution to creating a spatially-resolved single-cell multi-omics brain atlas
寻求集成分析解决方案来创建空间解析的单细胞多组学大脑图谱
  • 批准号:
    10724843
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311597
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
A smart, multi-purpose technology for diagnostics, analytics and drug delivery
用于诊断、分析和药物输送的智能多用途技术
  • 批准号:
    EP/W004585/2
  • 财政年份:
    2022
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Research Grant
NSERC CREATE Program on Multi-sensor Systems for Navigation and Mapping - Training for Technology, Applications and Analytics
NSERC CREATE 导航和测绘多传感器系统计划 - 技术、应用和分析培训
  • 批准号:
    495568-2017
  • 财政年份:
    2022
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Collaborative Research and Training Experience
Predicting geological and geomechanical rock properties using data analytics and multi-sensor core logging data
使用数据分析和多传感器岩心测井数据预测地质和地质力学岩石特性
  • 批准号:
    RGPIN-2020-06196
  • 财政年份:
    2022
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Discovery Grants Program - Individual
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
  • 批准号:
    10677539
  • 财政年份:
    2022
  • 资助金额:
    $ 23.57万
  • 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
  • 批准号:
    10368562
  • 财政年份:
    2022
  • 资助金额:
    $ 23.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了