PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
基本信息
- 批准号:10368562
- 负责人:
- 金额:$ 121.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-05 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAlgorithmsAreaAwarenessClinicalClinical MedicineCollaborationsCommunicationConsumptionCustomDataData AggregationData ScienceDevelopmentDiagnosisDiagnosticDiseaseEarly DiagnosisElectronic Health RecordFloridaGenerationsGoalsHealthHealth PersonnelHealth systemIncidenceInstitutionInterventionKnowledgeLeadLearningLogisticsManualsMedicalMethodologyMethodsMorbidity - disease ratePatientsPatternPredictive AnalyticsPrevalenceProcessProviderPsoriatic ArthritisRare DiseasesReproducibilityResearchResourcesSecureSiteSoftware EngineeringSyndromeSystemTechniquesTechnologyTestingTherapeuticTherapeutic InterventionTimeTranslational ResearchVasculitisWegener&aposs Granulomatosisaccurate diagnosisanalytical toolclinical diagnosisclinical research sitecostdata hubdata integrationdata sharingexpectationimplementation scienceindividual patientmortalitynext generationnoveloperationpragmatic trialpredict clinical outcomeprediction algorithmpredictive modelingpredictive testprivacy preservationresearch clinical testingrisk predictionsuccesstool
项目摘要
Project Summary
This proposal seeks support to develop novel data integration methods using electronic health records (EHR)
from multiple CTSA hubs to create predictive models of multi-system diseases. The proposed project directly
addresses the areas of emphasis in PAR-19-099 to “engage new collaborators in pre-existing collaborations to
solve a translational science problem no one hub can solve alone”.
Research gap: The overarching goal of this proposal is to develop the Predictive Analytics via Networked
Distributed Algorithms (PANDA) framework, which will enable accurate risk prediction to help healthcare
providers reach accurate diagnoses earlier. Our proposed methods directly address two major barriers: 1) lack
of predictive models for multi-system conditions; 2) lack of algorithms that effectively combine data from
multiple sites in a privacy-preserving and communication-efficient fashion.
In this proposal, we will develop and evaluate the PANDA framework using two prototypic multi-system
conditions, with different levels of prevalence: granulomatosis with polyangiitis (GPA, a type of vasculitis,
prevalence of 74 per million) and psoriatic arthritis (PsA) (1500 per million), with the expectation that the
approach will be readily applicable to other diseases. These two conditions are particularly well-suited to the
development of our predictive methods given the commonly encountered delays in diagnosis that can range
from months to years. These delays may be associated with high morbidity and early mortality. We have
three Specific Aims:
Aim 1. Develop predictive models for granulomatosis with polyangiitis and psoriatic arthritis, and data
integration algorithms to enable secure and efficient data sharing among multiple institutions.
Aim 2. Test the predictive models from Aim 1 using aggregated data (not IPD) from a separate set of
CTSA sites to validate the data integration methodology.
Aim 3. Develop a “toolbox” of resources through which the PANDA processes of algorithm generation
and data aggregation can be easily shared with and adopted for use by all CTSAs and others.
The success of this project will lead to novel analytic tools for facilitating efficient and privacy-preserving data
sharing and collaborative risk predictions across CTSA sites. The PANDA process of novel analytic tools to
assist clinical diagnoses and interventions should then be studied through pragmatic trials to evaluate its
potential to decrease diagnostic delays and alter patients’ health trajectories. This project is highly feasible and
is potentially transformative for both data science and clinical medicine.
项目摘要
该提案寻求支持使用电子健康记录(EHR)开发新的数据集成方法
从多个CTSA枢纽创建多系统疾病的预测模型。建议的项目直接
阐述了PAR-19-099中强调的领域,即在预先存在的协作中吸引新的合作者,以
解决任何一个枢纽都无法单独解决的翻译科学问题。
研究差距:该计划的总体目标是通过网络发展预测分析
分布式算法(Panda)框架,可实现准确的风险预测,帮助医疗保健
提供者更早地得出准确的诊断。我们提出的方法直接解决了两个主要障碍:1)缺乏
用于多系统条件的预测模型;2)缺乏有效地结合来自
以保护隐私和高效沟通的方式提供多个站点。
在这个提案中,我们将使用两个原型多系统来开发和评估Panda框架
疾病,有不同的流行程度:肉芽肿合并多血管炎(GPA,一种血管炎,
患病率为74‰)和牛皮癣关节炎(1500‰),预计
这种方法将很容易适用于其他疾病。这两个条件特别适合于
考虑到诊断中常见的延迟,我们的预测方法的发展可能会
从几个月到几年。这些延误可能与高发病率和早期死亡率有关。我们有
三个具体目标:
目的1.建立肉芽肿病合并多血管炎和银屑病关节炎的预测模型,并提供数据
集成算法,以实现多个机构之间安全高效的数据共享。
目标2.使用来自单独集合的聚合数据(非IPD)测试来自目标1的预测模型
CTSA站点,以验证数据集成方法。
目标3.开发一个“工具箱”的资源,熊猫通过它来处理算法生成
而且数据聚合可以很容易地与所有CTSA和其他机构共享和采用。
该项目的成功将带来新的分析工具,以促进高效和隐私保护数据
跨CTSA站点共享和协作风险预测。熊猫过程中的新分析工具
辅助临床诊断和干预应通过实用试验进行研究,以评估其
有可能减少诊断延迟和改变患者的健康轨迹。该项目具有很高的可行性和
对数据科学和临床医学都有潜在的变革。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang Bian其他文献
Jiang Bian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang Bian', 18)}}的其他基金
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 121.22万 - 项目类别:
Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
- 批准号:
10590413 - 财政年份:2023
- 资助金额:
$ 121.22万 - 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
- 批准号:
10751275 - 财政年份:2023
- 资助金额:
$ 121.22万 - 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
- 批准号:
10699171 - 财政年份:2023
- 资助金额:
$ 121.22万 - 项目类别:
An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
- 批准号:
10728800 - 财政年份:2023
- 资助金额:
$ 121.22万 - 项目类别:
AI-ADRD: Accelerating interventions of AD/ADRD via Machine learning methods
AI-ADRD:通过机器学习方法加速 AD/ADRD 干预
- 批准号:
10682237 - 财政年份:2023
- 资助金额:
$ 121.22万 - 项目类别:
Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
- 批准号:
10752848 - 财政年份:2023
- 资助金额:
$ 121.22万 - 项目类别:
Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI
利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准
- 批准号:
10608470 - 财政年份:2023
- 资助金额:
$ 121.22万 - 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
- 批准号:
10576853 - 财政年份:2022
- 资助金额:
$ 121.22万 - 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
- 批准号:
10392169 - 财政年份:2022
- 资助金额:
$ 121.22万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 121.22万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 121.22万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 121.22万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 121.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 121.22万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 121.22万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 121.22万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 121.22万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 121.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 121.22万 - 项目类别:
Research Fellowships














{{item.name}}会员




