Grid Scale Thermal and Thermo-Chemical Electricity Storage
电网规模热能和热化学电能存储
基本信息
- 批准号:EP/W027860/1
- 负责人:
- 金额:$ 136.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Thermo-chemical energy storage (TCES) has the potential to store very large amounts of energy within a small space and at low cost. This is achieved by converting thermal energy ('heat') to chemical energy via a reversible chemical reaction. For example, by heating a granular metallic oxide to the right temperature and at the right pressure, some of the oxygen is driven off (i.e., the substance is 'reduced') and heat is absorbed during the process. The resulting 'reduced oxide' is stable and can be stored for long periods without degradation. Heat can subsequently be recovered, when required, by passing air at elevated pressure over the reduced oxide. Some of the oxygen in the air is then absorbed but the remaining gas is heated by the reaction and (since it is also at high pressure) can be used to drive a gas turbine to generate electricity.Other gas-solid reactions are also possible, including 'calcination' of limestone (i.e., heating it up to drive off carbon dioxide) and hydration (with steam) of e.g. calcium oxide. Each reaction has its own set of peculiarities which can be exploited to its advantage. For example, the carbon dioxide emerging from the calcination reaction can be compressed and liquefied. This in itself absorbs electrical energy (in order to drive the compressors) and constitutes an additional, surprisingly compact and stable form of energy storage, from which electricity can be recovered by using the high-pressure CO2 to drive a turbo-generator. Compared with batteries, TCES has the potential to store energy at much lower cost per kilowatt-hour of storage capacity at grid scale, despite having a lower round trip efficiency. This is because TCES systems can be built based on unit operations and power plant technologies which scale up easily, compared to electrochemical systems. The efficiency for a thermo-chemical system is likely to be in the range 40 to 60%, however the 'conservation of energy', means that the remaining energy need not be wasted: it can be exploited for heating buildings, providing hot water or supplying heat for industrial processes. Furthermore, these systems offer the possibility to provide long duration storage without any safety hazards or pressurised storage facilities. How these technologies can contribute to various grid services, the scale needed and how best to locate them within the distribution network needs to be assessed. Many of the components have inertia, which will provide some frequency support, but the thermal response may limit service provision, particularly if waste heat is also being utilised. In this grant we will develop and test new materials to enable more efficient and cost effective TCES processes. Issues investigated include the cycle stability of the materials, their capacities and rates of conversion. Lab scale testing will demonstrate key aspects of the cycles and provide information needed for design and modelling work to evaluate these processes. We will conduct modelling on the process flowsheet, with detailed component models to allow losses to be identified and the process and material combinations to be optimised. To understand the value of these technologies to society, we will conduct system level dynamic modelling to understand their ability to provide grid services under various scenarios, including those in which there is the provision of thermal energy for district/industrial heating applications. We will analyse and quantify the grid-scale integration potentialities of TCES technology by adopting a whole-system approach, thus its integration with electricity/heating/cooling/gas networks. This will allow us to unlock the opportunities offered by this novel multi-energy storage technology to enhance the flexibility of the energy grid as a whole, and thus enable a future energy system with a high penetration of renewables
热化学能量存储(TCES)具有在小空间内以低成本存储非常大量的能量的潜力。这是通过可逆化学反应将热能(“热量”)转化为化学能来实现的。例如,通过将粒状金属氧化物加热到合适的温度和合适的压力,一些氧气被驱除(即,该物质被“还原”)并且在该过程中吸收热量。由此产生的“还原氧化物”是稳定的,可以长期储存而不会降解。当需要时,随后可以通过使高压空气通过还原的氧化物来回收热量。然后空气中的一些氧气被吸收,但剩余的气体被反应加热,并且(因为它也处于高压下)可以用于驱动气体涡轮机发电。其他气固反应也是可能的,包括石灰石的“煅烧”(即,将其加热以驱除二氧化碳)和例如氧化钙的水合作用(用蒸汽)。每一种反应都有其自身的特点,可以利用这些特点来发挥其优势。例如,从煅烧反应中产生的二氧化碳可以被压缩和液化。这本身吸收电能(以驱动压缩机),并构成额外的,令人惊讶的紧凑和稳定的能量存储形式,通过使用高压CO2驱动涡轮发电机,可以从中回收电力。与电池相比,TCES具有在电网规模下以低得多的每千瓦时存储容量成本存储能量的潜力,尽管往返效率较低。这是因为TCES系统可以基于单元操作和发电厂技术构建,与电化学系统相比,这些技术容易扩大规模。热化学系统的效率可能在40%至60%的范围内,但是“节能”意味着剩余的能量不需要浪费:它可以用于加热建筑物,提供热水或为工业过程供热。此外,这些系统提供了在没有任何安全危险或加压储存设施的情况下提供长时间储存的可能性。需要评估这些技术如何为各种电网服务做出贡献,所需的规模以及如何最好地在配电网络中定位它们。许多组件具有惯性,这将提供一些频率支持,但热响应可能会限制服务提供,特别是如果还利用废热。在这笔赠款中,我们将开发和测试新材料,以实现更高效和更具成本效益的TCES流程。调查的问题包括材料的循环稳定性,它们的容量和转化率。实验室规模的测试将展示周期的关键方面,并提供设计和建模工作所需的信息,以评估这些过程。我们将对工艺流程进行建模,并提供详细的组件模型,以识别损失并优化工艺和材料组合。为了了解这些技术对社会的价值,我们将进行系统级动态建模,以了解它们在各种情况下提供电网服务的能力,包括为区域/工业供暖应用提供热能的情况。我们将通过采用整体系统方法分析和量化TCES技术的电网规模集成潜力,从而将其与电/热/冷/气网络集成。这将使我们能够释放这种新型多能源存储技术所提供的机会,以提高整个能源网的灵活性,从而实现可再生能源高度渗透的未来能源系统。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stuart Scott其他文献
QUANTITATIVE PHARMACOGENOMICS OF THE ANTICOAGULANT RESPONSE TO WARFARIN IN HEALTHY SUBJECTS
- DOI:
10.1016/s0735-1097(11)61286-2 - 发表时间:
2011-04-05 - 期刊:
- 影响因子:
- 作者:
Sarina Van der Zee;Stuart Scott;Dana Doheny;Elizabeth Rothlauf;Inga Peter;Leah Blanchard;Daniella Kadian-Dodov;Steven Lubitz;Robert J.J. Desnick;Jonathan L. Halperin - 通讯作者:
Jonathan L. Halperin
P525: Medical genetics providers require training and institutional support to integrate pharmacogenomic testing
- DOI:
10.1016/j.gimo.2024.101424 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
John Imbrie;Christina Tise;Kendall Schmidt;Hetanshi Naik;Stuart Scott - 通讯作者:
Stuart Scott
P178: The ClinGen Pharmacogenomics Working Group: Developing a framework for gene-drug response clinical validity
- DOI:
10.1016/j.gimo.2023.100207 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Li Gong;Clarissa Klein;Michelle Whirl-Carrillo;Stuart Scott;Teri Klein - 通讯作者:
Teri Klein
P179: The ClinGen Pharmacogenomics Working Group: Developing frameworks for evaluating pharmacogenomic gene validity and actionability
- DOI:
10.1016/j.gimo.2024.101076 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Li Gong;Michelle Whirl-Carrillo;Stuart Scott;Kelly Caudle;Ann Moyer;Clarissa Klein;Teri Klein - 通讯作者:
Teri Klein
The condomlessness of bareback sex: Responses to the unrepresentability of HIV in Treasure Island Media’s Plantin’ Seed and Slammed
无安全套的无鞍性行为:金银岛媒体的《Plantin’ Seed and Slammed》中对艾滋病病毒不可代表性的回应
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Stuart Scott - 通讯作者:
Stuart Scott
Stuart Scott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stuart Scott', 18)}}的其他基金
Boosting Reduction of Energy Intensity in cleaN STeelwork platfORM
清洁钢铁平台推动能源强度降低
- 批准号:
EP/S030387/1 - 财政年份:2019
- 资助金额:
$ 136.38万 - 项目类别:
Research Grant
ORACLE: Odorant RemovAl by Chemical Looping dEsulphurisation
ORACLE:通过化学循环脱硫去除臭气
- 批准号:
EP/N509887/1 - 财政年份:2015
- 资助金额:
$ 136.38万 - 项目类别:
Research Grant
Minerals for Sustainable COst and energy efficient chemical looping combUstion Technology
用于可持续成本和能源效率的矿物化学循环燃烧技术
- 批准号:
EP/L022427/1 - 财政年份:2014
- 资助金额:
$ 136.38万 - 项目类别:
Research Grant
Energy and the Physical Sciences: Advanced materials for thermo-chemical oxygen storage and production
能源和物理科学:用于热化学储氧和生产的先进材料
- 批准号:
EP/K030132/1 - 财政年份:2013
- 资助金额:
$ 136.38万 - 项目类别:
Research Grant
Multi-scale evaluation of advanced technologies for capturing the CO2: chemical looping applied to solid fuels.
捕获二氧化碳的先进技术的多尺度评估:应用于固体燃料的化学循环。
- 批准号:
EP/I010912/1 - 财政年份:2011
- 资助金额:
$ 136.38万 - 项目类别:
Research Grant
Joint UK / China Hydrogen production network
英国/中国联合制氢网络
- 批准号:
EP/G063265/1 - 财政年份:2010
- 资助金额:
$ 136.38万 - 项目类别:
Research Grant
Planning Meeting for Multiphase Drag Reduction Section of NSF I/UC for Multiphase Corrosion Research Center
NSF I/UC 多相腐蚀研究中心多相减阻部分规划会议
- 批准号:
9729258 - 财政年份:1997
- 资助金额:
$ 136.38万 - 项目类别:
Standard Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Silicon Photonic Integrated Circuits for Chip-Scale Thermal and Cold Atom Sensors
用于芯片级热原子和冷原子传感器的硅光子集成电路
- 批准号:
2887681 - 财政年份:2023
- 资助金额:
$ 136.38万 - 项目类别:
Studentship
Multi-scale modeling of thermal and fluid flow of cryogenic liquid hydrogen applied for liquid rocket propulsion system
用于液体火箭推进系统的低温液氢热流和流体流的多尺度建模
- 批准号:
23H01606 - 财政年份:2023
- 资助金额:
$ 136.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Resolving multi-scale ecological consequences of thermal refuges amidst climate warming
职业:解决气候变暖过程中避难所的多尺度生态后果
- 批准号:
2236526 - 财政年份:2023
- 资助金额:
$ 136.38万 - 项目类别:
Continuing Grant
Investigating atomic-scale mechanisms of thermal ageing in steels harvested from decommissioned pressurisers from Ringhals Units 2 and 4 Reactors
研究从 Ringhals 2 号和 4 号反应堆退役加压器中回收的钢的热老化原子尺度机制
- 批准号:
2887627 - 财政年份:2023
- 资助金额:
$ 136.38万 - 项目类别:
Studentship
A Multi-Scale Approach for Predicting River Temperatures and Thermal Habitats.
预测河流温度和热栖息地的多尺度方法。
- 批准号:
RGPIN-2018-06015 - 财政年份:2022
- 资助金额:
$ 136.38万 - 项目类别:
Discovery Grants Program - Individual
CAREER: CAS-Climate: Understanding Thermal Transport Processes in Atmospheric Boundary Layer with Utility-Scale Solar Photovoltaic Plants
职业:CAS-气候:了解公用事业规模太阳能光伏电站的大气边界层热传输过程
- 批准号:
2144299 - 财政年份:2022
- 资助金额:
$ 136.38万 - 项目类别:
Continuing Grant
A Multi-Scale Approach for Predicting River Temperatures and Thermal Habitats.
预测河流温度和热栖息地的多尺度方法。
- 批准号:
RGPIN-2018-06015 - 财政年份:2021
- 资助金额:
$ 136.38万 - 项目类别:
Discovery Grants Program - Individual
Towards Cervical cancer elimination: Implementation and scale-up of a single-visit, screen-and-treat approach with thermal ablation for sustainable cervical cancer prevention services in Kenya
消除宫颈癌:在肯尼亚实施和扩大单次就诊、筛查和治疗的热消融方法,以提供可持续的宫颈癌预防服务
- 批准号:
10843625 - 财政年份:2021
- 资助金额:
$ 136.38万 - 项目类别:
Large-scale multiphysics topology optimization for thermal and fluid systems
热和流体系统的大规模多物理场拓扑优化
- 批准号:
21J13418 - 财政年份:2021
- 资助金额:
$ 136.38万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Towards Cervical cancer elimination: Implementation and scale-up of a single-visit, screen-and-treat approach with thermal ablation for sustainable cervical cancer prevention services in Kenya
消除宫颈癌:在肯尼亚实施和扩大单次就诊、筛查和治疗的热消融方法,以提供可持续的宫颈癌预防服务
- 批准号:
10180713 - 财政年份:2021
- 资助金额:
$ 136.38万 - 项目类别: