Advanced Metrology for Polymer Electrolysers - AMPERE
聚合物电解槽的先进计量 - AMPERE
基本信息
- 批准号:EP/W033321/1
- 负责人:
- 金额:$ 32.18万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Hydrogen will play a central role in the clean economy and in meeting ambitious climate targets. However, to realise its full potential, we must enable low cost, widespread production of zero-carbon H2 by water electrolysis, powered using renewable energy. Underlying this challenge is improved understanding of these complex systems from atoms to cells under real world operating conditions. AMPERE brings together experts from academia, national laboratories and industry to diagnose and understand degradation and performance-limiting processes in electrolysers. Crucially, this project will address the effects of system dynamics, a key but often overlooked aspect of operation when using intermittent energy sources such as solar and wind.We will leverage a unique toolbox of state-of-the-art measurement techniques, spanning length scales from ionic motion in the polymer membrane, to local electrochemical activity across electrode assemblies, water management and bubble formation. This will produce the definitive picture of multi-scale electrolyser dynamics and our focus on realistic production rates and in-situ/operando methods will ensure these insights will have practical relevance. Thus, the outputs of AMPERE will help usher in zero-carbon H2 at scale, as a chemical feedstock and energy vector for clean power generation, heating and transportation.
氢气将在清洁经济和实现雄心勃勃的气候目标方面发挥核心作用。然而,为了实现其全部潜力,我们必须通过水电解、使用可再生能源提供动力,实现低成本、广泛生产零碳H2。这一挑战的背后是对现实世界运行条件下从原子到细胞的这些复杂系统的更好理解。Ampere汇集了来自学术界、国家实验室和行业的专家,以诊断和了解电解槽中的退化和性能限制过程。至关重要的是,这个项目将解决系统动力学的影响,这是使用太阳能和风能等间歇性能源时操作的一个关键但经常被忽视的方面。我们将利用一个独特的最先进测量技术工具箱,范围从聚合物膜中的离子运动到电极组件的局部电化学活动、水管理和气泡形成。这将产生多尺度电解槽动力学的最终图景,我们对实际生产率和现场/操作方法的关注将确保这些见解将具有实际意义。因此,安培的产量将有助于迎来规模化的零碳氢气,作为清洁发电、供暖和运输的化学原料和能源载体。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Radiation-grafted anion-exchange membranes for CO 2 electroreduction cells: an unexpected effect of using a lower excess of N -methylpiperidine in their fabrication
用于CO 2 电还原电池的辐射接枝阴离子交换膜:在其制造中使用较低过量的N-甲基哌啶的意想不到的效果
- DOI:10.1039/d3ta04915a
- 发表时间:2023
- 期刊:
- 影响因子:11.9
- 作者:Willson T
- 通讯作者:Willson T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Brett其他文献
Validation of an "Intelligent Mouthguard" Single Event Head Impact Dosimeter.
“智能护齿”单事件头部冲击剂量计的验证。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
A. Bartsch;Sergey Samorezov;E. Benzel;V. Miele;Daniel Brett - 通讯作者:
Daniel Brett
Cloud-based virtual flow metering system powered by a hybrid physics-data approach for water production monitoring in an offshore gas field
- DOI:
10.1016/j.dche.2023.100124 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:
- 作者:
Rafael H. Nemoto;Roberto Ibarra;Gunnar Staff;Anvar Akhiiartdinov;Daniel Brett;Peder Dalby;Simone Casolo;Andris Piebalgs - 通讯作者:
Andris Piebalgs
Moldova's parliamentary elections of November 2014
- DOI:
10.1016/j.electstud.2015.09.002 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:
- 作者:
Daniel Brett;Eleanor Knott - 通讯作者:
Eleanor Knott
Daniel Brett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Brett', 18)}}的其他基金
Structure-Property Based Design of Novel Composite Proton Exchange Membranes
基于结构-性能的新型复合质子交换膜设计
- 批准号:
NE/V009885/1 - 财政年份:2020
- 资助金额:
$ 32.18万 - 项目类别:
Research Grant
FUEL CELL TECHNOLOGIES FOR AN AMMONIA ECONOMY
用于氨经济的燃料电池技术
- 批准号:
EP/M014371/1 - 财政年份:2015
- 资助金额:
$ 32.18万 - 项目类别:
Research Grant
Multiscale in-situ characterisation of degradation and reactivity in solid oxide fuel cells
固体氧化物燃料电池降解和反应性的多尺度原位表征
- 批准号:
EP/J001007/1 - 财政年份:2012
- 资助金额:
$ 32.18万 - 项目类别:
Research Grant
REFINE: a coordinated materials programme for the sustainable REduction of spent Fuel vital In a closed loop Nuclear Energy cycle
REFINE:可持续减少乏燃料的协调材料计划对于闭环核能循环至关重要
- 批准号:
EP/J000531/1 - 财政年份:2011
- 资助金额:
$ 32.18万 - 项目类别:
Research Grant
Developing an experimental functional map of polymer electrolyte fuel cell operation
开发聚合物电解质燃料电池运行的实验功能图
- 批准号:
EP/G060991/1 - 财政年份:2009
- 资助金额:
$ 32.18万 - 项目类别:
Research Grant
相似海外基金
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 32.18万 - 项目类别:
Fellowship
STTR Phase I: Snapshot, on-machine metrology system for high-precision optical manufacturing
STTR 第一阶段:用于高精度光学制造的快照机上测量系统
- 批准号:
2322208 - 财政年份:2024
- 资助金额:
$ 32.18万 - 项目类别:
Standard Grant
SBIR Phase I: Rapid and Accurate Large Aperture Surface Metrology for Future High Speed Communication
SBIR 第一阶段:面向未来高速通信的快速、准确的大孔径表面计量
- 批准号:
2335106 - 财政年份:2024
- 资助金额:
$ 32.18万 - 项目类别:
Standard Grant
Validating the performance of graphene sensors using advanced metrology
使用先进计量学验证石墨烯传感器的性能
- 批准号:
10039216 - 财政年份:2023
- 资助金额:
$ 32.18万 - 项目类别:
Collaborative R&D
Advancing Quantum Sensing and Metrology Education: Concepts, Curricula, and Research on Student Learning
推进量子传感和计量教育:概念、课程和学生学习研究
- 批准号:
2315691 - 财政年份:2023
- 资助金额:
$ 32.18万 - 项目类别:
Standard Grant
Novel x-ray interferometers for length metrology
用于长度计量的新型 X 射线干涉仪
- 批准号:
2880824 - 财政年份:2023
- 资助金额:
$ 32.18万 - 项目类别:
Studentship
Metrology for innovative nanotherapeutics
创新纳米疗法的计量
- 批准号:
10085387 - 财政年份:2023
- 资助金额:
$ 32.18万 - 项目类别:
EU-Funded
Metrology for genomic profiling to support early cancer detection and precision medicine
基因组分析计量学支持早期癌症检测和精准医疗
- 批准号:
10088626 - 财政年份:2023
- 资助金额:
$ 32.18万 - 项目类别:
EU-Funded
Clarification of Grinding Mechanism of Next Generation Semiconductor Substrates for Minimizing the Damaged Layers Using Nanomachining and Metrology
利用纳米加工和计量学阐明下一代半导体衬底的研磨机制,以最大限度地减少损坏层
- 批准号:
23H01311 - 财政年份:2023
- 资助金额:
$ 32.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)