Stochastic Gradient Descent in Banach Spaces

Banach 空间中的随机梯度下降

基本信息

  • 批准号:
    EP/X010740/1
  • 负责人:
  • 金额:
    $ 44.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Inverse problems are concerned with the reconstruction of the causes of a physical phenomena from given observational data. They have wide applications in many problems in science and engineering such as medical imaging, signal processing, and machine learning. Iterative methods are a particularly powerful paradigm for solving a wide variety of inverse problems. They are often posed by defining an objective function that contains information about data fidelity and assumptions about the sought quantity, which is then minimised through an iterative process. Mathematics has played a critical role in analysing inverse problems and corresponding algorithms.Recent advances in data acquisition and precision have resulted in datasets of increasing size for a vast number of problems, including computed and positron emission tomography. This increase in data size poses significant computational challenges for traditional reconstruction methods, which typically require the use of all the observational data in each iteration. Stochastic iterative methods address this computational bottleneck by using only a small subset of observation in each iteration. The resulting methods are highly scalable, and have been successfully deployed in a wide range of problems. However, the use of stochastic methods has thus far been limited to a restrictive set of geometric assumptions, requiring Hilbert or Euclidean spaces. The proposed fellowship aims to address these issues by developing stochastic gradient methods for solving inverse problems posed in Banach spaces. The use of non-Hilbert spaces is gaining increased attention within inverse problems and machine learning communities. Banach spaces offer much richer geometric structures, and are a natural problem domain for many problems in partial differential equation and medical tomography. Moreover, Banach-space norms are advantageous for preservation of important properties, such as sparsity. This fellowship will introduce modern optimisation methods into classical Banach space theory and its successful completion will create novel research opportunities for inverse problems and machine learning.
逆问题是指从给定的观测数据中重建物理现象的原因。它们在医学成像、信号处理和机器学习等科学和工程领域有着广泛的应用。迭代方法是一种特别强大的范例,用于解决各种各样的反问题。它们通常是通过定义一个目标函数来提出的,该目标函数包含有关数据保真度的信息和有关所寻求的数量的假设,然后通过迭代过程将其最小化。数学在分析反问题和相应的算法中起着至关重要的作用。数据采集和精度的最新进展导致了大量问题的数据集越来越大,包括计算机和正电子发射断层扫描。这种数据量的增加对传统重建方法提出了巨大的计算挑战,传统重建方法通常需要在每次迭代中使用所有观测数据。随机迭代方法通过在每次迭代中仅使用一小部分观测值来解决这个计算瓶颈。由此产生的方法是高度可扩展的,并已成功地部署在广泛的问题。然而,迄今为止,随机方法的使用仅限于一组限制性的几何假设,需要希尔伯特或欧几里得空间。拟议的研究金旨在通过开发随机梯度方法来解决Banach空间中提出的逆问题来解决这些问题。非希尔伯特空间的使用在逆问题和机器学习社区中越来越受到关注。Banach空间提供了更丰富的几何结构,是偏微分方程和医学层析成像中许多问题的自然问题域。此外,Banach空间范数有利于保持重要的性质,如稀疏性。该奖学金将把现代优化方法引入经典Banach空间理论,其成功完成将为逆问题和机器学习创造新的研究机会。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Score-Based Generative Models for PET Image Reconstruction
  • DOI:
    10.59275/j.melba.2024-5d51
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Singh;Alexander Denker;Riccardo Barbano;vZeljko Kereta;Bangti Jin;K. Thielemans;P. Maass;S. Arridge
  • 通讯作者:
    I. Singh;Alexander Denker;Riccardo Barbano;vZeljko Kereta;Bangti Jin;K. Thielemans;P. Maass;S. Arridge
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zeljko Kereta其他文献

Zeljko Kereta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于肺结节多正交位CT图像Curvelet纹理构建 Gradient Boosting 集成预测模型
  • 批准号:
    81172772
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

CIF: Small: How Much of Reinforcement Learning is Gradient Descent?
CIF:小:强化学习中有多少是梯度下降?
  • 批准号:
    2245059
  • 财政年份:
    2023
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Standard Grant
Temporally Adaptive Stochastic Gradient Descent (TASGD)
时间自适应随机梯度下降 (TASGD)
  • 批准号:
    572648-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 44.35万
  • 项目类别:
    University Undergraduate Student Research Awards
Robust Preconditioned Gradient Descent Algorithms for Deep Learning
用于深度学习的鲁棒预条件梯度下降算法
  • 批准号:
    2208314
  • 财政年份:
    2022
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Standard Grant
Parameter-Free Stochastic Gradient Descent: Fast, Self-Tuning Algorithms for Training Deep Neural Networks
无参数随机梯度下降:用于训练深度神经网络的快速自调整算法
  • 批准号:
    547242-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
A study of stochastic gradient descent algorithms in the high-dimensional limit using random matrix theory
利用随机矩阵理论研究高维极限下的随机梯度下降算法
  • 批准号:
    569306-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Parameter-Free Stochastic Gradient Descent: Fast, Self-Tuning Algorithms for Training Deep Neural Networks
无参数随机梯度下降:用于训练深度神经网络的快速自调整算法
  • 批准号:
    547242-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2203412
  • 财政年份:
    2021
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003081
  • 财政年份:
    2020
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003111
  • 财政年份:
    2020
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2002937
  • 财政年份:
    2020
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了