Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
基本信息
- 批准号:2002937
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recent wave of technological advances in machine learning and artificial intelligence has led to widespread applications and public awareness. At the same time, the rapid growth of high-speed wireless network services presents an opportunity for future distributed learning involving a vast number of smart IoT devices. This project targets several technical challenges posed by the limited reliability of wireless connections and computational constraints of the edge nodes in distributed learning systems. Overcoming these challenges is vital to the plethora of computation, communication, and coordination tasks required by distributed machine learning at the network edge. Centered on developing innovative edge learning algorithms over wireless MAC channels under the constraints of computing, power, and bandwidth, this project can significantly impact wireless edge learning in a variety of IoT applications, ranging from transportation, safety, and agriculture, to energy efficiency, e-health, and smart infrastructure. The broader impact of this research will also come through many educational opportunities by providing opportunities in STEM to K-12, women, and underrepresented minority students. This collaborative project will develop an innovative network architecture for distributed learning over wireless multi-access channels. Specifically, the PIs will take a principled approach to develop an integrated wireless edge learning framework, using both gradient-based methods and also very recent advances in gradient-free, zero-order optimization, while taking into account the constraints in computing, power and bandwidth therein, in a holistic manner. The developed methods will be also extended to the setting of distributed online learning and reinforcement learning under wireless MAC. The PIs will focus on optimizing communication-efficient gradient sparsification based local updates that are communicated within the wireless network under bandwidth constraints; and each sender intelligently carries out transmission power allocation based on learning gradient and channel conditions. One important objective is to develop a novel learning-based framework for efficient wireless channel estimation and update to enable effective power control and learning. The project will devise edge learning algorithms that are robust against wireless channel uncertainty. The team of PIs shall comprehensively investigate the impact of the wireless bandwidth and power constraint on both the accuracy and convergence speed of edge learning algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近机器学习和人工智能的技术进步浪潮带来了广泛的应用和公众意识。与此同时,高速无线网络服务的快速增长为涉及大量智能物联网设备的未来分布式学习提供了机会。该项目针对分布式学习系统中无线连接的有限可靠性和边缘节点的计算约束所带来的几个技术挑战。克服这些挑战对于网络边缘的分布式机器学习所需的大量计算、通信和协调任务至关重要。该项目致力于在计算、功耗和带宽的限制下通过无线MAC信道开发创新的边缘学习算法,可以显著影响各种物联网应用中的无线边缘学习,从交通、安全和农业到能源效率、电子健康和智能基础设施。这项研究的更广泛影响也将通过为K-12,妇女和代表性不足的少数民族学生提供STEM机会来获得许多教育机会。 该合作项目将开发一种创新的网络架构,用于通过无线多接入通道进行分布式学习。具体而言,PI将采取原则性的方法来开发集成的无线边缘学习框架,使用基于梯度的方法以及无梯度、零阶优化的最新进展,同时以整体方式考虑其中的计算、功率和带宽限制。所开发的方法也将扩展到无线MAC下的分布式在线学习和强化学习的设置。PI将专注于优化在带宽约束下在无线网络内传送的基于通信高效梯度稀疏化的本地更新;并且每个发送器基于学习梯度和信道条件智能地执行传输功率分配。一个重要的目标是开发一种新的基于学习的框架,用于有效的无线信道估计和更新,以实现有效的功率控制和学习。该项目将设计边缘学习算法,对无线信道的不确定性具有鲁棒性。PI团队将全面调查无线带宽和功率限制对边缘学习算法的准确性和收敛速度的影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spectral Clustering Aided User Grouping and Scheduling in Wideband MU-MIMO Systems
- DOI:10.1109/icc45041.2023.10279388
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Chih-Ho Hsu;Carlos Feres;Zhi Ding
- 通讯作者:Chih-Ho Hsu;Carlos Feres;Zhi Ding
Exploiting Partial FDD Reciprocity for Beam Based Pilot Precoding and CSI Feedback in Deep Learning
利用部分 FDD 互易性进行深度学习中基于波束的导频预编码和 CSI 反馈
- DOI:10.1109/twc.2023.3289929
- 发表时间:2023
- 期刊:
- 影响因子:10.4
- 作者:Lin, Yu-Chien;Lee, Ta-Sung;Ding, Zhi
- 通讯作者:Ding, Zhi
Hypergraph Spectral Analysis and Processing in 3D Point Cloud
- DOI:10.1109/tip.2020.3042088
- 发表时间:2021-01-01
- 期刊:
- 影响因子:10.6
- 作者:Zhang, Songyang;Cui, Shuguang;Ding, Zhi
- 通讯作者:Ding, Zhi
Deep Learning Phase Compression for MIMO CSI Feedback by Exploiting FDD Channel Reciprocity
利用 FDD 信道互易性进行 MIMO CSI 反馈的深度学习相位压缩
- DOI:10.1109/lwc.2021.3096808
- 发表时间:2021
- 期刊:
- 影响因子:6.3
- 作者:Lin, Yu-Chien;Liu, Zhenyu;Lee, Ta-Sung;Ding, Zhi
- 通讯作者:Ding, Zhi
A Markovian Model-Driven Deep Learning Framework for Massive MIMO CSI Feedback
- DOI:10.1109/twc.2021.3103120
- 发表时间:2022-02-01
- 期刊:
- 影响因子:10.4
- 作者:Liu, Zhenyu;del Rosario, Mason;Ding, Zhi
- 通讯作者:Ding, Zhi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhi Ding其他文献
Engineering Radio Map for Wireless Resource Management
用于无线资源管理的工程无线电地图
- DOI:
- 发表时间:
2018-07 - 期刊:
- 影响因子:12.9
- 作者:
Suzhi Bi;Jiangbin Lyu;Zhi Ding;Rui Zhang - 通讯作者:
Rui Zhang
Microfluidic fabrication of photonic encoding magnetized silica microspheres for aptamer-based enrichment of Ochratoxin A
微流体制造光子编码磁化二氧化硅微球用于基于适体的赭曲霉毒素 A 富集
- DOI:
10.1007/s00604-017-2400-3 - 发表时间:
2017-07 - 期刊:
- 影响因子:0
- 作者:
Jingjing Xu;Wei Li;Peng Shen;Yichen Li;Yawei Li;Yang Deng;Qian Zheng;Yan Liu;Zhi Ding;Jianlin Li;Tiesong Zheng - 通讯作者:
Tiesong Zheng
An Integrated Linear Programming Receiver for LDPC Coded MIMO-OFDM Signals
LDPC编码MIMO-OFDM信号的集成线性规划接收器
- DOI:
10.1109/tcomm.2013.050813.120530 - 发表时间:
2013-05 - 期刊:
- 影响因子:8.3
- 作者:
Yong Li;Lin Wang;Zhi Ding - 通讯作者:
Zhi Ding
Plug-in UL-CSI-Assisted Precoder Upsampling Approach in Cellular FDD Systems
蜂窝 FDD 系统中的插入式 UL-CSI 辅助预编码器上采样方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yu;Yan Xin;Ta;Charlie Zhang;Yibo Ma;Zhi Ding - 通讯作者:
Zhi Ding
DNA/chitosan nanocomplex as a novel drug carrier for doxorubicin
DNA/壳聚糖纳米复合物作为阿霉素新型药物载体
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:6
- 作者:
Xiaoyun Cheng;Fengxian Zhang;Guangxin Zhou;Shuying Gao;Lei Dong;Wei Jiang;Zhi Ding;Jiangning Chen;Junfeng Zhang - 通讯作者:
Junfeng Zhang
Zhi Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhi Ding', 18)}}的其他基金
SWIFT-SAT: Network Adaptation Based on Physics-Inspired Learning Framework for Radio Coexistence of Terrestrial and Satellite Information Systems
SWIFT-SAT:基于物理启发的学习框架的网络适应地面和卫星信息系统的无线电共存
- 批准号:
2332760 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CCSS: Hyper-Graph Signal Processing for Multimedia Data Analysis in Cyber System Applications
CCSS:用于网络系统应用中多媒体数据分析的超图信号处理
- 批准号:
2029848 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SWIFT:SMALL: Dynamic Wireless Resource Management and Transceiver Adaptation for Efficient Spectrum Utilization and Coexistence
SWIFT:SMALL:动态无线资源管理和收发器适配,实现高效频谱利用和共存
- 批准号:
2029027 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CIF: Small: Robust Signal Recovery and Grant-Free Access for Massive IoT Connectivity
CIF:小型:强大的信号恢复和无授权访问大规模物联网连接
- 批准号:
2009001 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SpecEES: Towards Secure Decision Making in Spectrum and Energy Efficient IoT Systems
SpecEES:在频谱和节能物联网系统中实现安全决策
- 批准号:
1824553 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
WiFiUS: Collaborative Research: Low Overhead Wireless Access Solutions for Massive and Dynamic IoT Connectivity
WiFiUS:协作研究:用于大规模动态物联网连接的低开销无线接入解决方案
- 批准号:
1702752 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
High Performance Receiver Designs in Non-Orthogonal Multiple Access Networks for New Generations of Wireless Services
用于新一代无线服务的非正交多址网络中的高性能接收机设计
- 批准号:
1711823 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Overcoming Technological Challenges for Spectrum Trading
合作研究:克服频谱交易的技术挑战
- 批准号:
1443870 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CIF: Small: Optimized Receiver Design Integration for Diversity and Cooperative Transmissions Beyond Belief Propagation
CIF:小型:优化的接收器设计集成,实现超越置信传播的多样性和协作传输
- 批准号:
1321143 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Cooperative Wireless Networking for Secure and Optimized Transmission of Non-Gaussian Source Signals
用于非高斯源信号安全和优化传输的协作无线网络
- 批准号:
1307820 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2203412 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
- 批准号:
2002821 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
- 批准号:
2002874 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2003081 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
- 批准号:
2002902 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
- 批准号:
2003098 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2003111 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
- 批准号:
2003131 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Hyperdimensional Computing for Scalable IoT Intelligence Beyond the Edge
协作研究:MLWiNS:用于超越边缘的可扩展物联网智能的超维计算
- 批准号:
2003279 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
- 批准号:
2003082 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant