Trust in User-generated Evidence: Analysing the Impact of Deepfakes on Accountability Processes for Human Rights Violations (TRUE)
信任用户生成的证据:分析 Deepfakes 对侵犯人权行为问责流程的影响 (TRUE)
基本信息
- 批准号:EP/X016021/1
- 负责人:
- 金额:$ 164.71万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
User-generated evidence - defined as information recorded by an ordinary citizen and used in legal adjudication - plays anincreasingly important role in accountability processes. Across the world, advances in mobile phone technology and increasinginternet access mean that millions of important photographs and videos depicting mass human rights violations have been, and willcontinue to be, created and shared online. Mass atrocity trials in Sweden, Germany, The Netherlands, and the International CriminalCourt, amongst others, have already utilised this kind of evidence, as have UN Human Rights Council-mandated commissions ofinquiry, fact-finding missions, and investigations. Yet, at the same time, the public is increasingly confronted with examples ofdeepfakes - hyper-realistic images, videos, or audio recordings created using machine learning technology - which are only likely tobecome more advanced and difficult to detect as the technology progresses. These two developments pose an importantconundrum: have perceptions of deepfakes led to a mistrust in user-generated evidence? And if so, what does that mean for the roleof such evidence in future human rights accountability processes? Much of the literature to date has expressed a concern that the risein deepfakes will lead to mass mistrust in user-generated evidence, and that this in turn will decrease its epistemic value in legalproceedings. This may well be the case, but no study has yet tested that assumption. This is a major evidence gap that urgently needsto be addressed. Through an innovative interdisciplinary methodology at the intersection of law, psychology, and linguistics, thispioneering project will develop the first systematic account of trust in user-generated evidence, in the specific context of its use inhuman rights accountability processes.
用户生成的证据--被定义为普通公民记录并用于法律的裁决的信息--在问责过程中发挥着越来越重要的作用。在世界各地,移动的电话技术的进步和互联网接入的增加意味着数百万张描述大规模侵犯人权行为的重要照片和视频已经并将继续在网上创建和分享。瑞典、德国、荷兰和国际刑事法院等国的大规模暴行审判已经使用了这类证据,联合国人权理事会授权的调查委员会、实况调查团和调查也是如此。然而,与此同时,公众越来越多地面临深度伪造的例子--使用机器学习技术创建的超现实图像、视频或录音--随着技术的进步,它们只会变得更加先进,难以检测。这两个发展提出了一个重要的难题:对deepfakes的看法是否导致了对用户生成证据的不信任?如果是,这对此类证据在未来人权问责进程中的作用意味着什么?迄今为止,许多文献都表示担心,deepfakes的兴起将导致对用户生成的证据的大规模不信任,这反过来又会降低其在法律诉讼中的认识价值。这很可能是事实,但目前还没有任何研究来验证这一假设。这是一个急需解决的重大证据缺口。通过法律,心理学和语言学交叉的创新跨学科方法,这个开创性的项目将在其使用非人道权利问责过程的特定背景下,开发第一个对用户生成证据信任的系统性说明。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yvonne McDermott其他文献
The ICTR’s fact-finding legacy: lessons for the future of proof in international criminal trials
- DOI:
10.1007/s10609-015-9268-x - 发表时间:
2015-10-09 - 期刊:
- 影响因子:0.800
- 作者:
Yvonne McDermott - 通讯作者:
Yvonne McDermott
Yvonne McDermott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yvonne McDermott', 18)}}的其他基金
The future of human rights investigations: Using open source intelligence to transform the documentation and discovery of human rights violations
人权调查的未来:利用开源情报改变侵犯人权行为的记录和发现
- 批准号:
ES/R00899X/1 - 财政年份:2018
- 资助金额:
$ 164.71万 - 项目类别:
Research Grant
相似海外基金
Understanding of Consumption Context Using User Generated Big Data
使用用户生成的大数据了解消费环境
- 批准号:
23H00859 - 财政年份:2023
- 资助金额:
$ 164.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 164.71万 - 项目类别:
CAREER: Scalable Spatial Data Science on User-generated Data
职业:基于用户生成数据的可扩展空间数据科学
- 批准号:
2237348 - 财政年份:2023
- 资助金额:
$ 164.71万 - 项目类别:
Continuing Grant
MOVE - Marketing Online through user-generated Video Engagement - Qubeeo Limited
MOVE - 通过用户生成的视频参与进行在线营销 - Qubeeo Limited
- 批准号:
10057623 - 财政年份:2023
- 资助金额:
$ 164.71万 - 项目类别:
Collaborative R&D
SaTC: CORE: Small: Investigating and Mitigating Harmful Design in User-Generated Virtual World through Design Moderation
SaTC:核心:小型:通过设计审核调查和减轻用户生成的虚拟世界中的有害设计
- 批准号:
2326505 - 财政年份:2023
- 资助金额:
$ 164.71万 - 项目类别:
Continuing Grant
SBIR Phase I: User-generated real time qualitative data processing for climate impacted model validation, integration, and augmentation
SBIR 第一阶段:用户生成的实时定性数据处理,用于气候影响模型验证、集成和增强
- 批准号:
2216888 - 财政年份:2022
- 资助金额:
$ 164.71万 - 项目类别:
Standard Grant
Empirical research on monetization model of user-generated content
用户生成内容变现模型的实证研究
- 批准号:
21K01769 - 财政年份:2021
- 资助金额:
$ 164.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neural Machine Translation for User-Generated Content
用户生成内容的神经机器翻译
- 批准号:
20K19879 - 财政年份:2020
- 资助金额:
$ 164.71万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
MediaFinder: a content-based recommendation system for user-generated audio-visual content
MediaFinder:基于内容的用户生成视听内容推荐系统
- 批准号:
43733 - 财政年份:2020
- 资助金额:
$ 164.71万 - 项目类别:
Study
User-Generated Content Recommendation Considering the Dual Aspect of User Consumption and Creative Information
考虑用户消费和创意信息双重性的用户生成内容推荐
- 批准号:
20K19934 - 财政年份:2020
- 资助金额:
$ 164.71万 - 项目类别:
Grant-in-Aid for Early-Career Scientists