NP2: Hybrid Nanoparticle-Nanoporous nitride materials as a novel precision manufacture route to optoelectronic devices
NP2:混合纳米颗粒-纳米多孔氮化物材料作为光电器件的新型精密制造途径
基本信息
- 批准号:EP/X017028/1
- 负责人:
- 金额:$ 25.76万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Augmented reality (AR) has the power to seamlessly integrate the digital world with physical reality. It could provide surgeons with vital medical data as they operate, allow athletes to access training information seamlessly whilst playing sports and offers countless other opportunities in business, leisure and beyond. However, currently AR technologies are let down by the performance of microdisplays. AR devices must operate successfully not only in darkened rooms but also in bright sunlight, and must also be very small and run all day on one charge of a compact battery. Hence, enormous demands are placed on tiny light emitters in microdisplays in terms of brightness and efficiency. For AR to become a mass market technology, any new approach to microdisplays will need to not only meet these demands, but also allow easy manufacturing.Current light emitting diodes (LEDs) fail to meet these needs, since key materials which work well for larger area light emitters exhibit a drop in efficiency when the device size is shrunk to meet the demands of form factor and resolution imposed by AR. However, in terms of large scale LEDs, devices based on gallium nitride (GaN) have been tremendously successful, transforming the lighting industry. GaN LEDs also show much lower drops in efficiency with reduction in size than other similar materials. Unfortunately, these GaN LEDs are highly efficient only for light emission in the blue region of the spectrum. Green, amber and particularly red devices based on the same materials have much lower efficiencies, but are needed to create full colour microdisplays. In white LED light bulbs, blue light is converted to other colours by phosphor materials, but these phosphors are manufactured as bulky micron sized powders, too coarse to be used in microLEDs.In this project, we will take a new approach to integrating alternative, nanometre-scale phosphor particles (ca. 100 atoms wide) with nitride LEDs. Our alternative phosphors are highly luminescent colloidal nanoparticles, synthesised straightforwardly in solution using scalable techniques and easily made into nanoparticle inks. These materials are already used in "QLED" display technologies, but display manufacture is complex and the difficulties increase substantially as the device shrinks. Our new concept is to use printing technologies to inject nanoparticles not onto the surface of LEDs, but into nanoscale pores in the GaN itself. The nanoporous GaN materials are a very recent development and unique, scalable methods for their fabrication have been invented in our laboratory. By printing onto these porous scaffolds we will exploit capillary action to suck the nanoparticles into the desired region of the device, preventing spreading of the nanoparticle ink and hence achieving controlled manufacture straightforwardly at the required scale. In so doing, we will create a new optical composite material - a combination of the GaN and the highly luminescent nanoparticles - and by using the structure of the nanopores to align and control the array of nanoparticles, we will enable new and more sophisticated devices, for future display technologies such as AR in three dimensions.
增强现实(AR)能够将数字世界与物理现实无缝集成。它可以为外科医生提供重要的医疗数据,让运动员在运动时无缝访问训练信息,并在商业,休闲等领域提供无数其他机会。然而,目前的AR技术被微显示器的性能所拖累。AR设备不仅必须在黑暗的房间中成功运行,而且必须在明亮的阳光下成功运行,而且必须非常小,并在紧凑型电池的一次充电下运行一整天。因此,在亮度和效率方面,对微型显示器中的微小光发射器提出了巨大的要求。为了使增强现实技术成为一项大众市场技术,任何新的微显示器方法都不仅需要满足这些需求,而且还需要易于制造。目前的发光二极管(LED)无法满足这些需求,因为当设备尺寸缩小以满足增强现实对形状因子和分辨率的要求时,适用于更大面积发光器的关键材料表现出效率下降。然而,在大规模LED方面,基于氮化镓(GaN)的器件取得了巨大的成功,改变了照明行业。GaN LED还显示出比其他类似材料低得多的效率随尺寸减小的下降。不幸的是,这些GaN LED仅对光谱蓝色区域的光发射高效。基于相同材料的绿色、琥珀色和特别是红色器件具有低得多的效率,但是需要创建全色微显示器。在白色LED灯泡中,蓝光通过磷光体材料转换为其他颜色,但这些磷光体被制造成笨重的微米级粉末,太粗糙而不能用于microLED。在这个项目中,我们将采取一种新的方法来集成替代的纳米级磷光体颗粒(约100微米)。100原子宽)与氮化物LED。我们的替代磷光体是高度发光的胶体纳米颗粒,使用可扩展的技术在溶液中直接合成,并易于制成纳米颗粒墨水。这些材料已经用于“QLED”显示技术,但显示器制造是复杂的,并且随着设备缩小,难度大大增加。我们的新概念是使用印刷技术将纳米颗粒注入到GaN本身的纳米孔中,而不是LED表面。纳米多孔GaN材料是一个非常新的发展和独特的,可扩展的方法,他们的制造已经在我们的实验室发明。通过在这些多孔支架上打印,我们将利用毛细作用将纳米颗粒吸入装置的所需区域,防止纳米颗粒油墨扩散,从而直接以所需规模实现受控制造。通过这样做,我们将创造一种新的光学复合材料-GaN和高发光纳米颗粒的组合-并通过使用纳米孔的结构来对齐和控制纳米颗粒的阵列,我们将使新的和更复杂的设备,用于未来的显示技术,如三维AR。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced excitonic nature of MAPbBr3 nanocrystals in nanoporous GaN
纳米多孔 GaN 中 MAPbBr3 纳米晶体的增强激子性质
- DOI:10.17863/cam.107518
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Bai X
- 通讯作者:Bai X
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Oliver其他文献
MP89-10 OUTCOMES OF ELECTIVE URETEROSCOPY FOLLOWING RECENT UROSEPSIS AND EMERGENCY DRAINAGE RELATED TO STONE DISEASE: PROSPECTIVE RESULTS OVER 5-YEARS FROM A UNIVERSITY HOSPITAL.
- DOI:
10.1016/j.juro.2018.02.2950 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
Amelia Pietropaolo;Patrick Jones;Robert Geraghty;Rachel Oliver;Bhaskar K Somani - 通讯作者:
Bhaskar K Somani
Macroplastique and Botox are superior to Macroplastique alone in the management of neurogenic vesicoureteric reflux in spinal cord injury population with presumed healthy bladders
Macroplastique 和 Botox 在治疗假定膀胱健康的脊髓损伤人群的神经源性膀胱输尿管反流方面优于单独使用 Macroplastique
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Vasileios I Sakalis;Rachel Oliver;Peter J Guy;Melissa C Davies - 通讯作者:
Melissa C Davies
A tissue-engineered approach to augmentation of the urinary bladder
- DOI:
10.1016/j.ijsu.2011.07.299 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Rachel Oliver;Maggie Glover;Linge Wang;Gwendolen Reilly;Derek Rosario - 通讯作者:
Derek Rosario
Event-based sensor multiple hypothesis tracker for space domain awareness
用于空间域感知的基于事件的传感器多假设跟踪器
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Rachel Oliver;Dmitry Savransky - 通讯作者:
Dmitry Savransky
Nonparametric Analysis of Non-Euclidean Data on Shapes and Images
形状和图像非欧几里得数据的非参数分析
- DOI:
10.1007/s13171-018-0127-9 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
R. Bhattacharya;Rachel Oliver - 通讯作者:
Rachel Oliver
Rachel Oliver的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Oliver', 18)}}的其他基金
Segregation of alloy and dopant atoms at defects in nitride materials
氮化物材料缺陷处合金和掺杂原子的偏析
- 批准号:
EP/Y004213/1 - 财政年份:2024
- 资助金额:
$ 25.76万 - 项目类别:
Research Grant
Fast Switching Zincblende GaN LEDs
快速开关闪锌矿 GaN LED
- 批准号:
EP/W03557X/1 - 财政年份:2022
- 资助金额:
$ 25.76万 - 项目类别:
Research Grant
EPSRC-FNR Collaborative Proposal: Radiative Efficiency in Advanced Sulfide Chalcopyrites for Solar Cells (REACh)
EPSRC-FNR 合作提案:太阳能电池用先进硫化黄铜矿的辐射效率 (REACh)
- 批准号:
EP/V029231/1 - 财政年份:2021
- 资助金额:
$ 25.76万 - 项目类别:
Research Grant
Simulation software for modelling nitride-based quantum light sources
用于模拟氮化物量子光源的仿真软件
- 批准号:
EP/R04502X/1 - 财政年份:2018
- 资助金额:
$ 25.76万 - 项目类别:
Research Grant
Time-resolved cathodoluminescence scanning electron microscope
时间分辨阴极发光扫描电子显微镜
- 批准号:
EP/R025193/1 - 财政年份:2018
- 资助金额:
$ 25.76万 - 项目类别:
Research Grant
Integration of RF Circuits with High Speed GaN Switching on Silicon Substrates
在硅衬底上集成射频电路与高速 GaN 开关
- 批准号:
EP/N017927/1 - 财政年份:2016
- 资助金额:
$ 25.76万 - 项目类别:
Research Grant
Beyond Blue: New Horizons in Nitrides (Platform Grant Renewal)
超越蓝色:氮化物的新视野(平台资助续订)
- 批准号:
EP/M010589/1 - 财政年份:2015
- 资助金额:
$ 25.76万 - 项目类别:
Research Grant
Non-polar nitride quantum dots for application in single photon sources
用于单光子源应用的非极性氮化物量子点
- 批准号:
EP/M011682/1 - 财政年份:2015
- 资助金额:
$ 25.76万 - 项目类别:
Research Grant
Study of semi-polar and non-polar nitride based structures for opto-electronic device applications
用于光电器件应用的半极性和非极性氮化物基结构的研究
- 批准号:
EP/J003603/1 - 财政年份:2012
- 资助金额:
$ 25.76万 - 项目类别:
Research Grant
相似国自然基金
一种经心房覆膜血管支架植入 Hybrid Fontan 手术的 临床新技术研究
- 批准号:20Y11910600
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于深度压缩技术的Hybrid像素探测器读出系统原型机研制
- 批准号:11875146
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
模拟胰岛“hybrid”修饰抗原诱导tolDC免疫保护1型糖尿病β细胞研究
- 批准号:81770777
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
PSMA靶向Hybrid-SiO2基纳米诊疗剂用于前列腺癌HIFU治疗及增效机制研究
- 批准号:81601499
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
穿戴式步行辅助的Hybrid控制体系及其据需辅助效应研究
- 批准号:51505048
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Hybrid数据的复杂系统辨识与优化设计及在低渗透油井中的应用
- 批准号:61572084
- 批准年份:2015
- 资助金额:67.0 万元
- 项目类别:面上项目
波-流-植被耦合环境下射流Hybrid RANS/LES数值模拟研究
- 批准号:51509075
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
Hybrid加速结构的理论及预制研究
- 批准号:11475201
- 批准年份:2014
- 资助金额:100.0 万元
- 项目类别:面上项目
基于BGM法结合Hybrid同化开展暴雨短期集合预报方法研究
- 批准号:41205073
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Hybrid方法的大型冗余驱动机构控制策略研究
- 批准号:51205392
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Spin-Exchange and Energy Transfer at Hybrid Molecular/Lanthanide Nanoparticle Interfaces to Control Triplet Excitons
混合分子/稀土纳米颗粒界面的自旋交换和能量转移控制三重态激子
- 批准号:
EP/Y015584/1 - 财政年份:2023
- 资助金额:
$ 25.76万 - 项目类别:
Research Grant
CRII: OAC: A Hybrid Finite Element and Molecular Dynamics Simulation Approach for Modeling Nanoparticle Transport in Human Vasculature
CRII:OAC:一种混合有限元和分子动力学模拟方法,用于模拟人体脉管系统中纳米颗粒的传输
- 批准号:
2326802 - 财政年份:2022
- 资助金额:
$ 25.76万 - 项目类别:
Standard Grant
X-ray-excited nanoparticle imaging - a new hybrid modality for deep, in-vivo imaging in preclinical research
X 射线激发纳米颗粒成像 - 临床前研究中深度体内成像的新混合模式
- 批准号:
MR/W002191/1 - 财政年份:2021
- 资助金额:
$ 25.76万 - 项目类别:
Research Grant
Developing a hybrid nanoparticle-hydrogel platform for long non-coding RNA delivery in inflammatory bowel disease
开发一种混合纳米颗粒-水凝胶平台,用于炎症性肠病中的长非编码RNA递送
- 批准号:
466679 - 财政年份:2021
- 资助金额:
$ 25.76万 - 项目类别:
Studentship Programs
Multielectron reduction of CO2 by light and monitoring of isotope-labelled species over alloy nanoparticle-ultrathin semiconductor hybrid surface
通过光对 CO2 进行多电子还原并监测合金纳米颗粒-超薄半导体混合表面上的同位素标记物质
- 批准号:
20H02834 - 财政年份:2020
- 资助金额:
$ 25.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Inducing synergistic functions derived from dynamic change in the shape of hybrid dendrimers with a nanoparticle core
具有纳米颗粒核心的杂化树枝状聚合物形状的动态变化诱导协同功能
- 批准号:
19H00845 - 财政年份:2019
- 资助金额:
$ 25.76万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Porous Silicon Nanoparticle and Graphite Hybrid Structures for Li-Ion Battery Anodes
用于锂离子电池阳极的多孔硅纳米颗粒和石墨混合结构
- 批准号:
538876-2019 - 财政年份:2019
- 资助金额:
$ 25.76万 - 项目类别:
Engage Grants Program
CRII: OAC: A Hybrid Finite Element and Molecular Dynamics Simulation Approach for Modeling Nanoparticle Transport in Human Vasculature
CRII:OAC:一种混合有限元和分子动力学模拟方法,用于模拟人体脉管系统中纳米颗粒的传输
- 批准号:
1755779 - 财政年份:2018
- 资助金额:
$ 25.76万 - 项目类别:
Standard Grant
Development of hybrid molecular-orbital:band method for investigating supported metal nanoparticle catalysts
杂化分子轨道的发展:用于研究负载型金属纳米颗粒催化剂的带法
- 批准号:
17K05750 - 财政年份:2017
- 资助金额:
$ 25.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of asymmetric plasmonic nanoparticle hybrid systems to ultrafast multiplewave nonlinear nanophotonics
非对称等离子体纳米颗粒混合系统在超快多波非线性纳米光子学中的应用
- 批准号:
17H02798 - 财政年份:2017
- 资助金额:
$ 25.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)