Adopting Green Solvents through Predicting Reaction Outcomes with AI/Machine Learning
通过人工智能/机器学习预测反应结果采用绿色溶剂
基本信息
- 批准号:EP/X021033/1
- 负责人:
- 金额:$ 202.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The switch from traditional organic solvents, many of which are hazardous, volatile or non-sustainable, to modern green solvents is one of the key sustainability objectives in High Value Chemical Manufacture. Currently, the use of green solvents is often explored at process development stage, instead of discovery stage. This necessitates re-optimisation of processes, due to changes in yield, selectivity, impurity profile and purification. These lead to longer development time, cost, and additional uncertainty. On the other hand, selecting the right solvent early may enhance chemoselectivity, avoid additional reaction steps, and simplify purification of the products.Predicting these changes is an important underpinning capability for wider adaptation of green solvents in manufacturing. Unfortunately, the scarcity of reaction data in green solvents is a key obstacle in developing this capability. Thus, there is an urgent need for ML models which predict reactivity in green solvents based on available data in traditional solvents. In addition to addressing the short time-scale of early-stage process development, these will increase the confidence in utilising green solvents at discovery stage, support sophisticated synthetic routes planning tools which takes into account side products, impurity and purification methods, and act as valuable regulatory tools for assessing hazardous impurities.This project will address these challenges through the following objectives: O1 Addressing the scarcity of reactivity data in the literature through curation of reaction data with reliable reaction time and inclusion of rate laws. O2 Developing solvent-dependent reactivity and reaction selectivity prediction models for green solvents.O3 Producing a set of standard substrates based on cheminformatics analysis of industrially relevant reactions and collecting their reactivity data in green solvents.These outputs will have transformative impacts in the chemical manufacture industry, delivering rapid, more sustainable and better quality-controlled processes through shorter development time, and confidence in predicting reaction outcomes in green solvents. The project will be carried out with support from industrial partners working in the field of cheminformatics and AI/Machine learning, e.g. Lhasa Ltd. and Molecule One. Its outputs will be guided and exploited by partners who are end-users in the High Value Chemical Manufacturing sectors: AstraZeneca, CatSci, and Concept Life Science.
从传统的有机溶剂(其中许多是危险的、挥发性的或不可持续的)转换为现代的绿色溶剂是高价值化学品制造的关键可持续发展目标之一。目前,绿色溶剂的使用通常在工艺开发阶段而不是发现阶段进行探索。由于产率、选择性、杂质谱和纯化的变化,这需要重新优化工艺。这些导致更长的开发时间、成本和额外的不确定性。另一方面,及早选择合适的溶剂可以提高化学选择性,避免额外的反应步骤,并简化产物的纯化。预测这些变化是绿色溶剂在制造业中更广泛适应的重要基础能力。不幸的是,在绿色溶剂中的反应数据的缺乏是发展这种能力的关键障碍。因此,有一个迫切需要的ML模型,预测在绿色溶剂中的反应性的基础上,在传统的溶剂中的可用数据。除了解决早期工艺开发时间短的问题外,这将增加在发现阶段使用绿色溶剂的信心,支持考虑副产物、杂质和纯化方法的复杂合成路线规划工具,并作为评估有害杂质的宝贵监管工具。本项目将通过以下目标解决这些挑战:O 1通过整理具有可靠反应时间的反应数据和纳入速率定律,解决文献中反应性数据的稀缺问题。O2为绿色溶剂开发依赖于溶剂的反应性和反应选择性预测模型。O3根据工业相关反应的化学信息学分析,生产一套标准底物,并收集它们在绿色溶剂中的反应性数据。这些产出将对化学制造行业产生变革性影响,通过更短的开发时间提供快速、更可持续和更好的质量控制工艺,以及预测绿色溶剂中反应结果的置信度。该项目将在化学信息学和人工智能/机器学习领域的工业合作伙伴的支持下进行,例如Lhasa Ltd.和Molecule One。其产出将由高价值化学品制造领域的最终用户合作伙伴指导和利用:阿斯利康,CatSci和概念生命科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bao Nguyen其他文献
FLT3 Inhibition and Retinoid Signaling Overcome Stromal Protection to Target FLT3/ITD-Expressing Leukemia Stem Cells in the Bone Marrow Microenvironment
FLT3 抑制和类视黄醇信号传导克服基质保护,靶向骨髓微环境中表达 FLT3/ITD 的白血病干细胞
- DOI:
10.1182/blood.v126.23.790.790 - 发表时间:
2015 - 期刊:
- 影响因子:20.3
- 作者:
Hayley S Ma;Megan E McCray;Courtney M. Shirley;A. Duffield;J. K. Bruner;Li Li;Bao Nguyen;S. Greenblatt;Eric Jung;P. Aplan;Richard J. Jones;D. Small;G. Ghiaur - 通讯作者:
G. Ghiaur
AI-assisted Learning for Electronic Engineering Courses in High Education
高等教育电子工程课程的人工智能辅助学习
- DOI:
10.48550/arxiv.2311.01048 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Thanh Nguyen Ngoc;Q. Tran;Arthur Tang;Bao Nguyen;Thuy Nguyen;Thanh Pham - 通讯作者:
Thanh Pham
CRITERIA FOR PREDICTING LOWER RISK OF ADVERSE EVENTS AMONG PATIENTS RECEIVING PRIMARY PERCUTANEOUS CORONARY INTERVENTION FOR ACUTE ST-SEGMENT ELEVATION MYOCARDIAL INFARCTION
- DOI:
10.1016/s0735-1097(21)02374-3 - 发表时间:
2021-05-11 - 期刊:
- 影响因子:
- 作者:
Ayman Elbadawi;Bao Nguyen;Suartcha Prueksaritanond;Khaled Ziada;Syed Gilani - 通讯作者:
Syed Gilani
Comparison of WarpX and GUINEA-PIG for electron positron collisions
WarpX 和 GUINEA-PIG 电子正电子碰撞的比较
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Bao Nguyen;A. Formenti;R. Lehe;J. Vay;Spencer Gessner;Luca Fedeli - 通讯作者:
Luca Fedeli
MYELOID NEOPLASIA All- trans retinoic acid synergizes with FLT3 inhibition to eliminate FLT3/ITD 1 leukemia stem cells in vitro and in vivo
骨髓瘤 全反式视黄酸与 FLT3 抑制协同作用,在体外和体内消除 FLT3/ITD 1 白血病干细胞
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Hayley S Ma;S. Greenblatt;Courtney M. Shirley;A. Duffield;J. K. Bruner;Li Li;Bao Nguyen;Eric Jung;P. Aplan;G. Ghiaur;Richard J. Jones;D. Small - 通讯作者:
D. Small
Bao Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bao Nguyen', 18)}}的其他基金
Water as synthetic reaction medium: realising its green chemistry credential
水作为合成反应介质:实现绿色化学证书
- 批准号:
EP/S013768/1 - 财政年份:2019
- 资助金额:
$ 202.57万 - 项目类别:
Research Grant
相似国自然基金
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
大豆Stay-Green基因启动子的自然变异调控叶片衰老的分子机制解析及其高产潜能发掘
- 批准号:32372029
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
船舶水弹性响应的Rankine-Green混合源时域匹配方法研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
两种生态型羊草不同滞绿(Stay-green)特性的机理研究
- 批准号:
- 批准年份:2020
- 资助金额:35 万元
- 项目类别:
Fast green FCF对神经炎症诱发的抑郁和认知障碍的作用和机制研究
- 批准号:LY19H090004
- 批准年份:2018
- 资助金额:0.0 万元
- 项目类别:省市级项目
利用数值 Green 函数求解开腔体正反散射问题的算法研究
- 批准号:11626054
- 批准年份:2016
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
槲蕨绿色球状体(Green Globular Bodies, GGBs)的形态发生机制研究
- 批准号:31600264
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
测度链上带变号Green函数的非局部问题正解的研究
- 批准号:11661049
- 批准年份:2016
- 资助金额:31.0 万元
- 项目类别:地区科学基金项目
非平衡Green函数法和Wigner分布函数法在量子输运中的应用
- 批准号:11671038
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
非半单Hopf代数的Green环及相关问题
- 批准号:11471282
- 批准年份:2014
- 资助金额:68.0 万元
- 项目类别:面上项目
相似海外基金
PFI-RP: A Novel Plastic Waste Recovery, Based on Environmentally Friendly (Green) Solvents
PFI-RP:基于环保(绿色)溶剂的新型塑料废物回收
- 批准号:
2234450 - 财政年份:2023
- 资助金额:
$ 202.57万 - 项目类别:
Standard Grant
Assembly and Disassembly of Polymer Hybrids Using Green Solvents
使用绿色溶剂组装和拆卸聚合物杂化物
- 批准号:
RGPIN-2022-04911 - 财政年份:2022
- 资助金额:
$ 202.57万 - 项目类别:
Discovery Grants Program - Individual
Platform technologies for sustainable manufacturing of smart textiles using natural polymers and bio-derived green solvents
使用天然聚合物和生物衍生绿色溶剂可持续制造智能纺织品的平台技术
- 批准号:
567994-2022 - 财政年份:2022
- 资助金额:
$ 202.57万 - 项目类别:
Postdoctoral Fellowships
I-Corps: Water Purification Membranes Made using Green Solvents
I-Corps:使用绿色溶剂制成的水净化膜
- 批准号:
2017133 - 财政年份:2020
- 资助金额:
$ 202.57万 - 项目类别:
Standard Grant
Cosmeceutical products from marine invertebrate processing wastes using green solvents
使用绿色溶剂从海洋无脊椎动物加工废物中提取药妆产品
- 批准号:
538908-2019 - 财政年份:2019
- 资助金额:
$ 202.57万 - 项目类别:
Engage Grants Program
Development of electrochemical CO2 reduction and understanding of reaction mechanism in green solvents
电化学CO2还原的发展和对绿色溶剂中反应机理的理解
- 批准号:
19K05133 - 财政年份:2019
- 资助金额:
$ 202.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A fundamental study of deep eutectic solvents and their application to green battery recycling processes
低共熔溶剂的基础研究及其在绿色电池回收过程中的应用
- 批准号:
2275259 - 财政年份:2019
- 资助金额:
$ 202.57万 - 项目类别:
Studentship
Towards electrochemical conversion of CO2 to green solvents
将二氧化碳电化学转化为绿色溶剂
- 批准号:
516555-2017 - 财政年份:2017
- 资助金额:
$ 202.57万 - 项目类别:
Engage Grants Program
Comprehensive understanding of life activities in organic solvents and application to green sustainable technologies
全面了解有机溶剂中的生命活动及其在绿色可持续技术中的应用
- 批准号:
17K20072 - 财政年份:2017
- 资助金额:
$ 202.57万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
SBIR Phase II: Catalytic Conversion of Lignocellulosic Biomass into Furfural and Dissolving Pulp using Green Solvents
SBIR 第二阶段:使用绿色溶剂将木质纤维素生物质催化转化为糠醛和溶解浆
- 批准号:
1632394 - 财政年份:2016
- 资助金额:
$ 202.57万 - 项目类别:
Standard Grant