Dead vs Alive Quantum Biology: Magnetoreception Enabled via Non-Markovianity
死与生量子生物学:通过非马尔可夫性实现磁接收
基本信息
- 批准号:EP/X027376/1
- 负责人:
- 金额:$ 72.79万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The emerging field of quantum biology suggests that nature may utilise non-trivial quantum effects to realize a classically unattainable advantage in the complex systems of life.The avian compass, which allows migratory birds to navigate over vast distances, is thought to be a prime example where quantum effects underpin biology. Evidence implies that this sense originates from a light-activated chemical reaction taking place in a protein called cryptochrome, located in the bird's eye. The reaction initiates magnetic field sensitive dynamics of spins, an intrinsic quantum property, of electrons and magnetic nuclei in two "radical" molecules. Consequently, the recombination of the radical pair to reform the protein's resting state is thought to acquire magnetic field sensitivity. However, many open questions remain to be solved to understand the exquisite, possibly quantum enhanced, sensitivity of nature and unlock its design principles.The majority of current models of the avian compass treat the dynamics of the cryptochrome in isolation. However, recent studies show that the response of an isolated cryptochrome to weak magnetic fields is likely insufficient to support bird navigation. We suggest that the key to this 'interaction strength gap' can be found in the protein's environment. Specifically, we propose that the oft-neglected openness of the spin system to the strongly coupled structured environment can provide an essential sensitivity boost through driving and noise contributions, caused by the physiological motion of the protein at timescales relevant to magnetoreception, and mediated via inter-radical interactions. This enhancement principle contrasts with common efforts to reduce environment interaction, which is seen as detrimental, in most instances of man-made quantum technology. However, for magnetoreception, our preliminary results suggest that, counterintuitively, the environment itself may be utilized to reinforce and revive quantum dynamics - in particular if the interaction with the environment has a finite memory time (non-Markovianity).We will develop new theory and computationally tractable approaches to unlock the potential of non-Markovian spin dynamics driven by environmental coupling, and to systematically assess the large complex systems of radical-pairs of biology. We will employ wave-function-based methodology in tandem with high-performance and GPU computing techniques to simulate a never before accessible regime that will elucidate non-Markovian enhanced magnetic field sensitivity for realistic systems. Our efforts will culminate in a general, user-friendly software package enabling complex spin dynamics simulations for the scientific community. Our derived insight will supersede current theoretical studies that are oversimplified and resolve the dilemma that current experiments on cryptochrome outside of its biological setting predict inadequate magnetic field sensitivity, thereby opening a new paradigm for biological magnetosensitivity.This interdisciplinary research program will not only invite a "live" treatment of quantum biology by highlighting a functional role of the living system environment, but also provide essential understanding of spin dynamics ubiquitous in chemistry. Several of these potentially magnetic field sensitive chemical reactions could have implications in biology and health (e.g. neurogenesis, lipid peroxidation), motivating a reassessment of exposure guidelines, and generating tools to control reactions in novel medical treatments. Furthermore, by learning from nature and improving upon it, design principles may be found for condensed phase technology manipulating quantum effects, such as quantum sensors that utilize noise as a resource. This will be addressed in the present research project by developing non-Markovian open quantum system treatments of radical reactions accounting for radical motion and complexity, facilitated by advanced numerical approaches.
量子生物学的新兴领域表明,自然可以利用非平凡的量子效应来实现在复杂的生命系统中经典无法获得的优势。使迁徙鸟类可以在广阔的距离上导航的鸟类指南针被认为是量子效应的典型例子。证据表明,这种感觉源于鸟眼中的蛋白质中发生的光激活化学反应。该反应启动了两个“自由基”分子中电子和磁核的自旋的磁场灵敏动力学。因此,对改革蛋白质的静息状态改革的自由基对重组被认为会获得磁场灵敏度。但是,许多开放的问题仍有待解决,以理解自然界的精致,可能增强的敏感性,并解锁其设计原理。当前的大多数模型孤立地处理了加密鲜星的动力学。然而,最近的研究表明,孤立的加密型对弱磁场的反应可能不足以支持鸟类导航。我们建议可以在蛋白质的环境中找到这种“相互作用强度差距”的关键。具体而言,我们提出,自旋系统对强耦合结构化环境的经常开放性可以通过驱动和噪声贡献来提高基本的灵敏度,这是由于蛋白质在与磁性相关的时间标度上的生理运动引起的,并通过反自由间的相互作用介导。在大多数人造量子技术的情况下,这种增强原理与减少环境相互作用的普遍努力形成了鲜明的对比,这被视为有害。但是,为了获得磁感受,我们的初步结果表明,违反直觉,可以利用环境来增强和复兴量子动态 - 特别是如果与环境的相互作用具有有限的记忆时间(非马克维亚语)(我们将开发出新的理论和计算性动力学的潜在,则可以开发出新的理论和计算动力学的潜在,并将其驱动到系统的范围内,并驱动了整体范围的范围,并将其驱动到系统的范围内,并构成了系统驱动的潜在,并构成了系统驱动的潜在,并将其用于系统驱动的潜在,并构成了越来越多的机构驱动的范围。生物学的激进对。我们将在具有高性能和GPU计算技术的串联中采用基于波功能的方法来模拟从未访问的易于访问的制度,从而阐明了对现实系统的非马克维亚增强的磁场灵敏度。我们的努力将达到一般,用户友好的软件包,从而为科学界提供了复杂的旋转动力学模拟。我们衍生的见解将取代当前的理论研究,这些研究过于简单,并解决了在其生物环境之外进行的密码色素实验的困境,预测了磁场敏感性不足,从而为生物磁性磁性的新范式开放了新的范式。这些跨学科研究计划也不会邀请“实质性的机构”来处理“量化”,从而邀请了“量化”的工作,该量子的生命是“实现的”,该量子的范围是“实现的”,该量子的范围是构成型号的实现,该量子的启发性的启发性均可启动,该量子的重点是启动的,该研究的重点是实现的,即启动型号的启示,即构成启动的启示,即构成启动的启示,即构成型号的启发性,即构成启动的构图。旋转动力学无处不在化学。这些潜在的磁场敏感化学反应中的几个可能对生物学和健康有影响(例如神经发生,脂质过氧化),激励对暴露指南的重新评估,并生成控制新医疗治疗中反应的工具。此外,通过从自然中学习并改善它,可以找到用于操纵量子效应的凝结相技术的设计原理,例如利用噪声作为资源的量子传感器。这将在本研究项目中通过开发非马克维亚开放量子系统处理的根本性反应,这是对根本运动和复杂性的解释,这是由先进的数值方法促进的。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetoreception in cryptochrome enabled by one-dimensional radical motion
一维激进运动实现隐花色素的磁接收
- DOI:10.1116/5.0142227
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ramsay J
- 通讯作者:Ramsay J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Kattnig其他文献
Daniel Kattnig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Kattnig', 18)}}的其他基金
Explaining the avian compass through sustained quantum dynamics in driven, open three-radical systems
通过驱动的开放三基系统中的持续量子动力学解释鸟类指南针
- 批准号:
EP/V047175/1 - 财政年份:2021
- 资助金额:
$ 72.79万 - 项目类别:
Research Grant
Quantum Dynamics of Radical Pairs Reactions in Membranes: Elucidating Magnetic Field Effects in Lipid Autoxidation
膜中自由基对反应的量子动力学:阐明脂质自氧化中的磁场效应
- 批准号:
EP/R021058/1 - 财政年份:2018
- 资助金额:
$ 72.79万 - 项目类别:
Research Grant
相似国自然基金
LDHs/VS2有序叠层异质结构的调控及其高倍率氯电储能机制研究
- 批准号:52301297
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
VS2@VN异质结复合电极构筑及多硫化物动力学转化机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于一维点蚀电极技术的局部腐蚀核心问题“盐膜vs.点蚀稳定性”的重新认识与机理探究
- 批准号:52201085
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
单核非血红素铁酶PenD催化不活泼碳原子间的去饱和反应:五配位碳正离子Vs氢隧穿
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于一维点蚀电极技术的局部腐蚀核心问题“盐膜vs.点蚀稳定性”的重新认识与机理探究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
- 批准号:
2348181 - 财政年份:2024
- 资助金额:
$ 72.79万 - 项目类别:
Standard Grant
Sex-specific fitness landscapes in the evolution of egg-laying vs live-birth
产卵与活产进化中的性别特异性适应性景观
- 批准号:
NE/Y001672/1 - 财政年份:2024
- 资助金额:
$ 72.79万 - 项目类别:
Research Grant
Structure vs Invariants in Proofs (StrIP)
证明中的结构与不变量 (StrIP)
- 批准号:
MR/Y011716/1 - 财政年份:2024
- 资助金额:
$ 72.79万 - 项目类别:
Fellowship
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
- 批准号:
24K11281 - 财政年份:2024
- 资助金额:
$ 72.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Self-centred vs. other-centred homeostatic plasticity in inhibitory interneurons
抑制性中间神经元中以自我为中心与以他人为中心的稳态可塑性
- 批准号:
BB/X014568/1 - 财政年份:2024
- 资助金额:
$ 72.79万 - 项目类别:
Research Grant