Provenance Analytics Model for Research Software (PARS)

研究软件来源分析模型 (PARS)

基本信息

  • 批准号:
    EP/X036383/1
  • 负责人:
  • 金额:
    $ 33.59万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Modern research is centered around publication, where peer review plays a pivotal role in assuring the quality of disseminated research. The research published is supported by a myriad of online services, allowing for published research to be searched and analysed based on a range of properties ranging from research area to authors. This honed process enables institutions, funding bodies, and the government to find, value, and use research.Software has become a critical factor in research in all disciplines. While it provides significant effort to develop and maintain its existence is not well acknowledged in the publication eco-system and its value to external stakeholders is hidden. The Society of Research Software Engineering and the Software Sustainability Institute has sort to recognise and promote the role of software and software engineers in research. Despite these efforts, the value of software and its contributors are not visible to external scrutiny.This project takes knowledge generated by the research process from different silos supporting research activities and integrates it into a single model expressing research activities, outputs, and contributors. The complex relationships in the research process can be expressed in provenance, which was designed to model complex processes in order to reason over. This model will build a more accurate knowledge base that can provide insight into the research process and evidence that can describe the value of research activities and contributors in context to academic publications. This can be used to describe the activity of research broadly to research bodies and institutions, or more granularly describing the work of an individual which can be used in promotion panels or support the search for employees. Concretely, this work will model using provenance: 1) Research software, its development and social interactions; 2) Academic publications and their attributes; 3) Relationships between research software and academic papers.The specific relationships modelled will be driven by stakeholder consultation and the NIA's research objections to provide a user-driven model to support both research-led and practical purposes. The graph structure of the provenance model provides benefits to the types of queries that can be asked of the data including temporal queries to support the investigation of phases of research, and it also reduces the complexity of queries because it will be possible to use one query instead of multiple queries across multiple sources with different standards and formats. While the data modelled in PARS already persists on the web, this data structure provides linked context about the development. - Improve the rate of links between publication by 30% - The number of papers with links research software from a particular field or conference per a year - The number of papers published in that field or conference for that year
现代研究以出版为中心,同行评议在确保传播研究的质量方面发挥着关键作用。发表的研究得到了无数在线服务的支持,允许根据从研究领域到作者的一系列属性搜索和分析已发表的研究。这一经过磨练的过程使机构、资助机构和政府能够发现、评估和使用研究成果。软件已成为所有学科研究的关键因素。虽然它为发展和维持其存在作出了重大努力,但在出版物生态系统中没有得到很好的承认,其对外部利益攸关方的价值也被隐藏起来。软件工程研究协会和软件可持续性研究所已经认识到并促进了软件和软件工程师在研究中的作用。尽管有这些努力,软件的价值及其贡献者是不可见的外部recruitment.This项目从不同的筒仓支持研究活动的研究过程中产生的知识,并将其集成到一个单一的模型表示研究活动,输出,和贡献者。研究过程中的复杂关系可以用起源来表示,起源是为了对复杂过程进行建模,以便进行推理。该模型将建立一个更准确的知识库,可以提供深入了解研究过程和证据,可以描述学术出版物背景下研究活动和贡献者的价值。这可以用来描述广泛的研究机构和研究机构的研究活动,或更细粒度地描述个人的工作,可用于晋升小组或支持寻找员工。具体而言,本研究将以来源为模型:1)研究软件及其开发和社会互动; 2)学术出版物及其属性; 3)研究软件与学术论文之间的关系。模型化的具体关系将由利益相关者咨询和NIA的研究目标驱动,以提供一个用户驱动的模型,支持研究导向和实用目的。起源模型的图结构为可以向数据询问的查询类型提供了好处,包括时间查询,以支持研究阶段的调查,并且它还降低了查询的复杂性,因为它可以使用一个查询而不是跨具有不同标准和格式的多个源的多个查询。虽然在PARS中建模的数据已经在网络上持续存在,但这种数据结构提供了有关开发的链接上下文。- 将出版物之间的链接率提高30% -每年从特定领域或会议中链接研究软件的论文数量-该领域或会议当年发表的论文数量

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heather Packer其他文献

The Ethics of Mixed Reality Games
混合现实游戏的道德规范
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    David E. Millard;Heather Packer;James Jordan;Sarah Hewitt;Y. Malinov;Neil Rogers
  • 通讯作者:
    Neil Rogers

Heather Packer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311598
  • 财政年份:
    2023
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311597
  • 财政年份:
    2023
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
Human Tutoring Augmented by Artificial Intelligence (AI): A Tutoring Analytics and Performance Support Model to Improve the Work and Professional Growth of Future Tutors
人工智能 (AI) 增强的人工辅导:一种辅导分析和绩效支持模型,可改善未来辅导员的工作和专业成长
  • 批准号:
    2222647
  • 财政年份:
    2022
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
CAREER: Rethink and Redesign of Analytics Databases for Machine Learning Model Serving
职业:重新思考和重新设计用于机器学习模型服务的分析数据库
  • 批准号:
    2144923
  • 财政年份:
    2022
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
Development and Evaluation of Learning Analytics Platform based on Learning Improvement Model
基于学习改进模型的学习分析平台开发与评估
  • 批准号:
    22H00552
  • 财政年份:
    2022
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of multiparametric kinetic data and analytics workflows for the generation of an hiPSC-cardiomyocyte based cardiovascular model
开发多参数动力学数据和分析工作流程,用于生成基于 hiPSC 心肌细胞的心血管模型
  • 批准号:
    2308124
  • 财政年份:
    2019
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Studentship
Extracting Analytics from NLP of English language learner to to display real-time Open Learner Model
从英语学习者的 NLP 中提取分析以显示实时开放学习者模型
  • 批准号:
    536649-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
III:Small: Towards Cross-Model Query Optimizations for Multi-model Heterogeneous Data Analytics
III:Small:面向多模型异构数据分析的跨模型查询优化
  • 批准号:
    1909875
  • 财政年份:
    2019
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
Enhancing Model-based Testing using Software Analytics
使用软件分析增强基于模型的测试
  • 批准号:
    RGPIN-2014-05108
  • 财政年份:
    2019
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了