Provenance Analytics Model for Research Software (PARS)

研究软件来源分析模型 (PARS)

基本信息

  • 批准号:
    EP/X036383/1
  • 负责人:
  • 金额:
    $ 33.59万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Modern research is centered around publication, where peer review plays a pivotal role in assuring the quality of disseminated research. The research published is supported by a myriad of online services, allowing for published research to be searched and analysed based on a range of properties ranging from research area to authors. This honed process enables institutions, funding bodies, and the government to find, value, and use research.Software has become a critical factor in research in all disciplines. While it provides significant effort to develop and maintain its existence is not well acknowledged in the publication eco-system and its value to external stakeholders is hidden. The Society of Research Software Engineering and the Software Sustainability Institute has sort to recognise and promote the role of software and software engineers in research. Despite these efforts, the value of software and its contributors are not visible to external scrutiny.This project takes knowledge generated by the research process from different silos supporting research activities and integrates it into a single model expressing research activities, outputs, and contributors. The complex relationships in the research process can be expressed in provenance, which was designed to model complex processes in order to reason over. This model will build a more accurate knowledge base that can provide insight into the research process and evidence that can describe the value of research activities and contributors in context to academic publications. This can be used to describe the activity of research broadly to research bodies and institutions, or more granularly describing the work of an individual which can be used in promotion panels or support the search for employees. Concretely, this work will model using provenance: 1) Research software, its development and social interactions; 2) Academic publications and their attributes; 3) Relationships between research software and academic papers.The specific relationships modelled will be driven by stakeholder consultation and the NIA's research objections to provide a user-driven model to support both research-led and practical purposes. The graph structure of the provenance model provides benefits to the types of queries that can be asked of the data including temporal queries to support the investigation of phases of research, and it also reduces the complexity of queries because it will be possible to use one query instead of multiple queries across multiple sources with different standards and formats. While the data modelled in PARS already persists on the web, this data structure provides linked context about the development. - Improve the rate of links between publication by 30% - The number of papers with links research software from a particular field or conference per a year - The number of papers published in that field or conference for that year
现代研究以发表为中心,同行评议在确保传播研究的质量方面发挥着关键作用。发表的研究得到了众多在线服务的支持,允许根据从研究领域到作者的一系列属性来搜索和分析发表的研究。这一经过磨练的过程使机构、资助机构和政府能够发现、评估和使用研究。软件已经成为所有学科研究的关键因素。虽然它为发展和维持它的存在作出了重大努力,但在出版物《生态系统》中没有得到很好的承认,而且它对外部利益攸关方的价值是隐藏的。研究软件工程学会和软件可持续发展研究所已经认识到并促进了软件和软件工程师在研究中的作用。尽管做出了这些努力,但软件及其贡献者的价值对外部审查是不可见的。该项目从支持研究活动的不同筒仓中获取研究过程产生的知识,并将其集成到一个表达研究活动、产出和贡献者的单一模型中。研究过程中的复杂关系可以用出处来表达,其设计是为了对复杂的过程进行建模,以便进行推理。这一模型将建立一个更准确的知识库,可以提供对研究过程的洞察和证据,可以在学术出版物的背景下描述研究活动和贡献者的价值。这可以用来概括地描述研究机构和机构的研究活动,或者更细粒度地描述个人的工作,这些工作可以用于晋升小组或支持寻找员工。具体地说,这项工作将使用发源地进行建模:1)研究软件、其开发和社会互动;2)学术出版物及其属性;3)研究软件和学术论文之间的关系。建模的具体关系将由利益相关者协商和NIA的研究反对意见驱动,以提供一个用户驱动的模型,以支持研究主导和实际目的。出处模型的图表结构对可以向包括时间查询在内的数据询问的查询类型提供了好处,以支持研究阶段的调查,并且它还降低了查询的复杂性,因为可以使用一个查询而不是具有不同标准和格式的跨多个来源的多个查询。虽然在PARS中建模的数据已经在Web上存在,但这种数据结构提供了关于开发的链接上下文。-将两次发表之间的链接率提高30%-每年使用链接研究软件从特定领域或会议发表的论文数量-该领域或会议该年发表的论文数量

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heather Packer其他文献

The Ethics of Mixed Reality Games
混合现实游戏的道德规范
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    David E. Millard;Heather Packer;James Jordan;Sarah Hewitt;Y. Malinov;Neil Rogers
  • 通讯作者:
    Neil Rogers

Heather Packer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311598
  • 财政年份:
    2023
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311597
  • 财政年份:
    2023
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
Human Tutoring Augmented by Artificial Intelligence (AI): A Tutoring Analytics and Performance Support Model to Improve the Work and Professional Growth of Future Tutors
人工智能 (AI) 增强的人工辅导:一种辅导分析和绩效支持模型,可改善未来辅导员的工作和专业成长
  • 批准号:
    2222647
  • 财政年份:
    2022
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
CAREER: Rethink and Redesign of Analytics Databases for Machine Learning Model Serving
职业:重新思考和重新设计用于机器学习模型服务的分析数据库
  • 批准号:
    2144923
  • 财政年份:
    2022
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
Development and Evaluation of Learning Analytics Platform based on Learning Improvement Model
基于学习改进模型的学习分析平台开发与评估
  • 批准号:
    22H00552
  • 财政年份:
    2022
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of multiparametric kinetic data and analytics workflows for the generation of an hiPSC-cardiomyocyte based cardiovascular model
开发多参数动力学数据和分析工作流程,用于生成基于 hiPSC 心肌细胞的心血管模型
  • 批准号:
    2308124
  • 财政年份:
    2019
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Studentship
Extracting Analytics from NLP of English language learner to to display real-time Open Learner Model
从英语学习者的 NLP 中提取分析以显示实时开放学习者模型
  • 批准号:
    536649-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
III:Small: Towards Cross-Model Query Optimizations for Multi-model Heterogeneous Data Analytics
III:Small:面向多模型异构数据分析的跨模型查询优化
  • 批准号:
    1909875
  • 财政年份:
    2019
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Standard Grant
Enhancing Model-based Testing using Software Analytics
使用软件分析增强基于模型的测试
  • 批准号:
    RGPIN-2014-05108
  • 财政年份:
    2019
  • 资助金额:
    $ 33.59万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了