CoTide - Co-design to deliver Scalable Tidal Stream Energy
CoTide - 共同设计提供可扩展的潮汐流能源
基本信息
- 批准号:EP/X03903X/1
- 负责人:
- 金额:$ 938.2万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The development of tidal stream energy presents a significant opportunity for the UK with a power generation potential in excess of 6GW nationally, and greater than 150GW globally. Delivering on net-zero and climate change objectives will require development and exploitation of all renewable energy resources to provide a robust and secure energy supply. The predictability of the tidal resource is a key benefit that can substantially contribute to resilient energy networks and complement less predictable renewable energy sources, e.g. wind, wave and solar. The UK currently leads tidal stream technology and science development, and there is significant opportunity to ensure global leadership of this exciting emerging sustainable energy sector.To date, the largest tidal device installed is 2MW and the largest array of devices is 6MW in Orkney and Pentland Firth respectively. Device technologies, marine infrastructure, deployment, and operational strategies have all been refined through industrial research, design and deployment at testing sites, assisted by university partnerships. The challenge now faced by the industry is to understand how to deliver tidal stream energy at a scale that will make a meaningful energy contribution. The solution hinges on the ability to deliver reliable, sustainable, scalable and affordable engineering solutions. The engineering challenge is complex and multi-faceted, and the importance of and sensitivity to design drivers are not always well understood.CoTide's research vision is to develop and demonstrate holistic integrated tools and design processes for tidal stream energy that will significantly reduce costs by removing unnecessary redundancy and improving confidence in engineering solutions, providing the transformative engineering processes and designs that will enable tidal energy to make a significant contribution to achieving climate change objectives by 2030-40.CoTide brings together three major university multi-disciplinary teams, each with deep world-leading expertise across the major engineering disciplines essential for the design of tidal stream devices. These include device hydrodynamics, composites and rotor materials, structures and reliability, metocean resource and environmental modelling, system control and optimisation. The constituent engineering design capabilities will be integrated towards addressing the big questions facing tidal stream energy developers through a unified control co-design process. Through this holistic approach, CoTide will not only develop the framework to assess the impact of design drivers and design decisions but will contribute fundamental understanding of unsteady rotor loads and means to control and resist these, how to use contemporary and emerging manufacturing methods to benefit cost and through-life reliability in addition to maximising the potential of digitalisation for optimal performance.With input from its Independent Advisory Board, the Programme resources will be periodically reviewed, adapted and refocused to concentrate on the research challenges that emerge from our research, the tidal energy sector and policy space, and that offer the best opportunities to support industry cost reduction pathways. As CoTide evolves, in addition to its core skills, the partners have a significant breadth of additional expertise to draw upon, with world leading capabilities in complementary areas within offshore renewable energy.CoTide is an ambitious but realistic programme that has the scale, academic gravitas, and resource to achieve innovation through addressing transformative design questions. Through its co-design framework, considering the full scope of interconnected engineering challenges and environmental factors, it will deliver the understanding, tools and data to support the progressive and step change reductions in cost and uncertainty needed to deliver scalable, sustainable and affordable tidal stream energy.
潮汐能的发展为英国提供了一个重要的机会,其发电潜力超过6 GW,全球超过150 GW。要实现净零排放和气候变化目标,就需要开发和利用所有可再生能源,以提供强劲和安全的能源供应。潮汐资源的可预测性是一个关键的好处,可以大大有助于弹性能源网络,并补充可预测性较低的可再生能源,如风能,海浪和太阳能。英国目前引领潮汐流技术和科学发展,并有很大的机会,以确保这一令人兴奋的新兴可持续能源领域的全球领导地位。迄今为止,安装的最大潮汐装置是2 MW,最大的装置阵列是6 MW,分别在奥克尼和彭特兰湾。设备技术、海洋基础设施、部署和运营战略都通过工业研究、设计和在试验场的部署得到了完善,并得到了大学伙伴关系的协助。该行业现在面临的挑战是了解如何以有意义的能源贡献的规模提供潮汐能。该解决方案取决于提供可靠、可持续、可扩展和经济实惠的工程解决方案的能力。工程挑战是复杂和多方面的,设计驱动因素的重要性和敏感性并不总是很好地理解。CoTide的研究愿景是开发和展示潮汐能的整体集成工具和设计过程,通过消除不必要的冗余和提高工程解决方案的信心,提供变革性的工程流程和设计,使潮汐能能够为实现2030- 40年的气候变化目标做出重大贡献。CoTide汇集了三个主要的大学多学科团队,每个人都在潮汐流设备设计所必需的主要工程学科中拥有世界领先的专业知识。这些包括设备流体力学,复合材料和转子材料,结构和可靠性,海洋气象资源和环境建模,系统控制和优化。组成工程设计能力将通过统一的控制协同设计过程集成,以解决潮汐流能源开发商面临的重大问题。通过这种整体方法,CoTide不仅将开发评估设计驱动因素和设计决策影响的框架,而且将有助于对非定常转子载荷的基本理解以及控制和抵抗这些载荷的方法,如何使用现代和新兴的制造方法,以节省成本,并通过-除了最大限度地发挥数字化潜力以实现最佳性能外,还具有寿命可靠性。根据其独立顾问委员会的意见,该计划的资源将定期审查,调整和重新调整重点,集中在我们的研究,潮汐能部门和政策空间出现的研究挑战,并提供最佳机会,以支持行业降低成本的途径。随着CoTide的发展,除了其核心技能外,合作伙伴还拥有广泛的额外专业知识,在海上可再生能源互补领域具有世界领先的能力。CoTide是一个雄心勃勃但现实的计划,具有规模,学术庄严和资源,通过解决变革性设计问题来实现创新。通过其共同设计框架,考虑到相互关联的工程挑战和环境因素的全部范围,它将提供理解,工具和数据,以支持成本和不确定性的逐步和逐步变化,以提供可扩展,可持续和负担得起的潮汐能。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modelling the effects of boundary proximity on a tidal rotor using the actuator line method
使用致动器线方法模拟边界邻近对潮汐转子的影响
- DOI:10.36688/ewtec-2023-407
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Edwards H
- 通讯作者:Edwards H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Willden其他文献
Added mass and damping forces of a floating tidal turbine undergoing pendulum motion
- DOI:
10.1016/j.oceaneng.2023.115014 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:
- 作者:
Mohamad H.B. Osman;Richard Willden - 通讯作者:
Richard Willden
Richard Willden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Willden', 18)}}的其他基金
Tidal Stream Energy - Designing for Performance
潮汐流能源 - 性能设计
- 批准号:
EP/R007322/1 - 财政年份:2018
- 资助金额:
$ 938.2万 - 项目类别:
Fellowship
相似国自然基金
基于接力催化的CO2加氢直接高选择性制乙烯多功能催化剂的研究
- 批准号:JCZRYB202500767
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
页岩微纳米孔隙水的移动性及CO2-水-岩反应对CH4/CO2运移的影响机制
- 批准号:JCZRQN202500299
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
深部咸水层CO2 封存盖层多尺度蠕变特性及临界幂律灾变机制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒽醌功能化的介孔氮化碳催化有机污染物光降解耦合CO2光还原转化为燃料的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
不同相态CO2对深部低渗不可采煤层气藏二氧化碳封存机制及潜力评估
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
新型核壳金属氧化物@沸石双功能催化剂可控制备及温室气体CO2加氢制乙烯反应机制的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
海洋溶解CO2传感器应用于原位长期监测的适应性改进
- 批准号:MS25D060007
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Co金属辅酶负载Fe电极的构筑及其催化还原脱卤机理研究
- 批准号:MS25E080050
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于多尺寸Ag基团簇电催化还原CO2的机器学习理论研究
- 批准号:QN25A040007
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
CO2+TBAB水合物浆体热流体机理与蓄释冷特性研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Rural Co-Design and Collaboration: Maximising Rural Community Assets to Reduce Place-Based Health Inequalities
农村共同设计与协作:最大化农村社区资产以减少基于地点的健康不平等
- 批准号:
AH/Z505559/1 - 财政年份:2024
- 资助金额:
$ 938.2万 - 项目类别:
Research Grant
SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
- 批准号:
2332534 - 财政年份:2024
- 资助金额:
$ 938.2万 - 项目类别:
Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
- 批准号:
2400014 - 财政年份:2024
- 资助金额:
$ 938.2万 - 项目类别:
Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
$ 938.2万 - 项目类别:
Standard Grant
CAREER: Physics-Infused Reduced-Order Modeling for Control Co-Design of Morphing Aerial Autonomous Systems
职业:用于变形空中自主系统控制协同设计的物理降阶建模
- 批准号:
2340266 - 财政年份:2024
- 资助金额:
$ 938.2万 - 项目类别:
Standard Grant
CAREER: Frequency Agile Real-Time Reconfigurable RF Analog Co-Processor Design Leveraging Engineered Nanoparticle and 3D Printing
职业:利用工程纳米颗粒和 3D 打印进行频率捷变实时可重构射频模拟协处理器设计
- 批准号:
2340268 - 财政年份:2024
- 资助金额:
$ 938.2万 - 项目类别:
Continuing Grant
CAREER: Enabling Scalable and Resilient Quantum Computer Architectures through Synergistic Hardware-Software Co-Design
职业:通过协同硬件软件协同设计实现可扩展且有弹性的量子计算机架构
- 批准号:
2340267 - 财政年份:2024
- 资助金额:
$ 938.2万 - 项目类别:
Continuing Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 938.2万 - 项目类别:
Continuing Grant
DMREF: Optimizing Problem formulation for prinTable refractory alloys via Integrated MAterials and processing co-design (OPTIMA)
DMREF:通过集成材料和加工协同设计 (OPTIMA) 优化可打印耐火合金的问题表述
- 批准号:
2323611 - 财政年份:2024
- 资助金额:
$ 938.2万 - 项目类别:
Continuing Grant
CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
- 批准号:
2340516 - 财政年份:2024
- 资助金额:
$ 938.2万 - 项目类别:
Continuing Grant