Automated multi-dimensional mapping of dynamic laser-liquid interactions

动态激光-液体相互作用的自动多维映射

基本信息

  • 批准号:
    EP/Y001737/1
  • 负责人:
  • 金额:
    $ 19.12万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

High-intensity laser interactions with matter produce extreme environments with very high temperatures and densities such that the electrons within the atoms of the material no longer remain bound to the atomic nuclei and the material becomes a plasma. These interactions can create conditions for studying astrophysical phenomena, including supernova shocks and solar flares, as well as supporting very high electric fields that can be used to accelerate charged particles over distances 100s to 1000s times shorter than the limits of radio-frequency accelerator technology. These compact accelerators have been shown to generate ion beams with highly desirable properties for key applications in materials testing, radiobiology, and inertial fusion energy. So far, full exploration and exploitation of these interactions has been hampered by the difficulty in reproducing their complex behaviour in numerical and computational models and by the limited data available which is caused by the low repetition rate of the high-energy pulsed laser (typically <<0.002 Hz - a shot every 10 mins) used to create the plasma and drive particle acceleration. This is particularly the case in the study of fragile ultra-thin opaque targets where the absorption of energy from the laser causes the target to heat and expand leading to the target becoming transparent as the density falls. When this occurs the laser can propagate through the target and the transfer of laser energy to the plasma is no-longer localised at the target surface. This interaction is of significant interest as it is here that the highest energy laser-accelerated protons have been recorded. A new generation of multi-Hz high-energy laser-technology is facilitating orders of magnitude increase in data acquisition rate. In order to exploit these new lasers, it is also necessary to test target technology that can provide fresh ultra-thin foils with high positional stability at multi-Hz repetition rate. In addition, despite the enormous increase in data acquisition-rate the dependence of the interaction dynamics on a large number of variables (e.g. laser energy, laser spatial and temporal energy distribution, target density profile) means that `grid-scanning' each parameter is not an efficient method to map their interdependence. By incorporating machine learning tools the high data rate enabled by the lasers and target can be used to intelligently sample the parameter space to model the interaction and quantify the stability of these novel accelerators. The proposed collaboration will address this challenge by coupling a liquid sheet target, developed at the US SLAC National Accelerator Laboratory (SLAC), with a new computer-guided approach to laser-plasma experiments, pioneered by researchers at Queen's University Belfast (QUB). The development of this novel experimental platform will enable deeper understanding of the key energy transfer pathways between laser and plasma and their dependence on experimental variables. The research will directly impact on plasma modelling, advanced accelerator research, plasma astrophysics, inertial confinement fusion, materials testing and FLASH radiobiology. The research outputs will feed into EPSRC 2022-2025 strategic priorities on the physical and mathematical sciences powerhouse, frontiers in engineering and artificial intelligence up-skilling through the research themes: AI and Data Science for Engineering, Health and Government by exploiting AI for experimental science; Energy through inertial confinement fusion; Plasma and lasers by developing crucial technology to facilitate deeper understanding and broader exploitation of novel radiation sources; and research infrastructure by enhancing the capabilities of high-intensity laser facilities.
高强度激光与物质的相互作用产生具有非常高的温度和密度的极端环境,使得材料原子内的电子不再保持与原子核的结合,并且材料成为等离子体。这些相互作用可以为研究天体物理现象创造条件,包括超新星冲击和太阳耀斑,以及支持非常高的电场,可用于加速带电粒子的距离比射频加速器技术的极限短100到1000倍。这些紧凑型加速器已被证明可以产生具有非常理想的特性的离子束,用于材料测试,放射生物学和惯性聚变能的关键应用。到目前为止,由于难以在数值和计算模型中再现它们的复杂行为,以及由于用于产生等离子体和驱动粒子加速的高能脉冲激光的低重复率(通常<<0.002 Hz -每10分钟发射一次)造成的可用数据有限,因此对这些相互作用的充分探索和利用受到阻碍。这在易碎超薄不透明目标的研究中尤其如此,其中来自激光的能量的吸收导致目标加热和膨胀,导致目标随着密度福尔斯下降而变得透明。当这种情况发生时,激光可以传播通过靶,并且激光能量到等离子体的转移不再局限于靶表面。这种相互作用非常有趣,因为在这里记录了最高能量的激光加速质子。新一代的多赫兹高能激光技术使数据采集速率有了几个数量级的提高。为了开发这些新的激光器,还需要测试目标技术,该技术可以提供在几Hz重复频率下具有高位置稳定性的新超薄箔。此外,尽管在数据采集率的巨大增加的相互作用动力学的依赖性的大量变量(例如激光能量,激光的空间和时间能量分布,目标密度分布)意味着,“网格扫描”每个参数不是一个有效的方法来映射它们的相互依赖性。通过结合机器学习工具,激光器和目标实现的高数据速率可用于智能地对参数空间进行采样,以对这些新型加速器的相互作用进行建模并量化其稳定性。拟议中的合作将通过将美国SLAC国家加速器实验室(SLAC)开发的液体片靶与女王大学贝尔法斯特(QUB)研究人员开创的新的计算机引导激光等离子体实验方法相结合来应对这一挑战。这个新的实验平台的开发将使人们能够更深入地了解激光和等离子体之间的关键能量传递途径及其对实验变量的依赖性。该研究将直接影响等离子体建模、先进加速器研究、等离子体天体物理学、惯性约束聚变、材料测试和FLASH放射生物学。研究成果将通过以下研究主题纳入EPSRC 2022-2025战略优先事项:物理和数学科学强国,工程和人工智能前沿:通过利用人工智能进行实验科学,为工程,健康和政府提供人工智能和数据科学;通过惯性约束聚变获得能源;等离子体和激光,通过开发关键技术,促进对新辐射源的更深入理解和更广泛的利用;以及研究基础设施,通过提高高强度激光设施的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charlotte Palmer其他文献

P-065: Development of a mass cytometry-based toolkit to investigate myeloma therapeutic responses ex vivo
  • DOI:
    10.1016/s2152-2650(22)00395-0
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sarah Gooding;Manman Guo;Oliver Van Oekelen;Kinda Al-Hourani;Edmund Watson;Charlotte Palmer;Martin Philpott;Warren Baker;David Ahern;Bhaskar Updahyaya;Seunghee Kim-Schulze;Erin Flynt;William Pierceall;Karthik Ramasamy;Adam Cribbs;Samir Parekh;Anjan Thakurta;Udo Oppermann
  • 通讯作者:
    Udo Oppermann
P-360 Exploring the role of the polycomb repressive complex 2 in high-risk multiple myeloma
  • DOI:
    10.1016/s2152-2650(23)01978-x
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Charlotte Palmer;Chih-Chao Hsu;Chad Bjorklund;Nicholas Stong;Adam Cribbs;Anjan Thakurta;Aparna Raval;Anita Gandhi;Patrick Hagner;Udo Oppermann
  • 通讯作者:
    Udo Oppermann
Therapeutic Application of Stem Cell and Gene Therapy in Parkinson’s Disease
干细胞和基因疗法在帕金森病的治疗应用
University of Birmingham Therapeutic avenues in bone repair
伯明翰大学骨修复治疗途径
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan W Lewis;Kathryn Frost;Georgiana Neag;Mussarat Wahid;Melissa Finlay;Ellie H. Northall;Oladimeji Abudu;Edward T. Davis;Emily Powell;Charlotte Palmer;Jinsen Lu;G. Rainger;Asif J. Iqbal;Myriam Chimen;Ansar Mahmood;Simon W. Jones;James R. Edwards;Amy J Naylor;H. McGettrick
  • 通讯作者:
    H. McGettrick
Role of Amyloid Precursor Protein (APP) and Its Derivatives in the Biology and Cell Fate Specification of Neural Stem Cells
  • DOI:
    10.1007/s12035-018-0914-2
  • 发表时间:
    2018-01-30
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Raquel Coronel;Adela Bernabeu-Zornoza;Charlotte Palmer;Mar Muñiz-Moreno;Alberto Zambrano;Eva Cano;Isabel Liste
  • 通讯作者:
    Isabel Liste

Charlotte Palmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charlotte Palmer', 18)}}的其他基金

ITRF - The Laser-hybrid Accelerator for Radiobiological Applications (LhARA)
ITRF - 用于放射生物学应用的激光混合加速器 (LhARA)
  • 批准号:
    ST/X005747/1
  • 财政年份:
    2022
  • 资助金额:
    $ 19.12万
  • 项目类别:
    Research Grant

相似国自然基金

基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    80 万元
  • 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
  • 批准号:
    62002350
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
  • 批准号:
    82001782
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
  • 批准号:
    62004023
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
  • 批准号:
    EP/Y022092/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.12万
  • 项目类别:
    Research Grant
CAREER: Multi-Dimensional Photonic Accelerators for Scalable and Efficient Computing
职业:用于可扩展和高效计算的多维光子加速器
  • 批准号:
    2337674
  • 财政年份:
    2024
  • 资助金额:
    $ 19.12万
  • 项目类别:
    Continuing Grant
AF: Small: Equilibrium Computation and Multi-Agent Learning in High-Dimensional Games
AF:小:高维游戏中的平衡计算和多智能体学习
  • 批准号:
    2342642
  • 财政年份:
    2024
  • 资助金额:
    $ 19.12万
  • 项目类别:
    Standard Grant
A multi-dimensional evaluation of therapeutic intervention-induced functional recovery for unilateral spatial neglect model animal
单侧空间忽视模型动物治疗干预诱导功能恢复的多维评价
  • 批准号:
    23K10445
  • 财政年份:
    2023
  • 资助金额:
    $ 19.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unified Robust Control System Design for Regional Multi-Energy Systems Based on Multi-Dimensional Systems and Dissipativity
基于多维系统和耗散性的区域多能源系统统一鲁棒控制系统设计
  • 批准号:
    23K03910
  • 财政年份:
    2023
  • 资助金额:
    $ 19.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 19.12万
  • 项目类别:
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
  • 批准号:
    10659772
  • 财政年份:
    2023
  • 资助金额:
    $ 19.12万
  • 项目类别:
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
  • 批准号:
    10725002
  • 财政年份:
    2023
  • 资助金额:
    $ 19.12万
  • 项目类别:
Implantable 3D fluorescence imaging with high-speed, addressable laser scanning in moving mice
通过高速、可寻址激光扫描对移动小鼠进行植入式 3D 荧光成像
  • 批准号:
    10614795
  • 财政年份:
    2023
  • 资助金额:
    $ 19.12万
  • 项目类别:
AI enhanced lifetime-based mesoscopic in vivo imaging of tissue molecular heterogeneity
人工智能增强了基于寿命的组织分子异质性细观体内成像
  • 批准号:
    10585510
  • 财政年份:
    2023
  • 资助金额:
    $ 19.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了