QC:SCALE - Quantum Circuits: Systematically Controlling And Linking Emitters for integrated solid state photonics platforms
QC:SCALE - 量子电路:系统地控制和链接集成固态光子平台的发射器
基本信息
- 批准号:EP/W006685/1
- 负责人:
- 金额:$ 109.27万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project investigates a promising solid state architecture that could be extended to build a quantum information processor. We focus on a well understood system, the NV-defect centre in diamond. This centre has a ground state spin that is well coupled to photons such that arrays of spins coupled by low loss waveguides can be envisaged. However the solid state brings increased decoherence and spectral non-uniformity compared to atomic systems. It also brings the prospect of building spin and photonic interfaces at scale, using nanofabrication. Here we aim to individually address solid-state emitters control their spin and make them spectrally indistinguishable thus ensuring high fidelity spin quantum bits linked by waveguides on a chip. While most of the focus of the solid-state quantum photonics community has been devoted to finding an ideal solid-state emitter that exhibits atom-like properties, relatively little effort has been spent on figuring out how one can build complex opto-electronic systems around them enabling precise optical and spin control. This is especially important, given that traditional top-down semiconductor manufacturing methods cannot be directly applied to such bottom-up systems. Since a fully error corrected quantum computer will need O(1E6) qubits and even near-term noisy intermediate scale quantum (NISQ) devices need O(1E2) to demonstrate computational quantum supremacy, there is an urgent need to establish that bottom up systems employing solid state emitters can be scaled up to be competitive with top-down fabricated systems (such as those employed for linear optics and superconducting circuits). The NV- centre provides a room-temperature quantum system with optical and spin degrees of freedom that can be accessed and manipulated and this room temperature readout makes the NV- centre attractive for rapid iteration and prototyping of devices, both in the electrical and optical domain. In addition, the ready availability of high coherence NV- centres in nanodiamond form allows us to directly implement bottom-up manufacturing methods, originally developed in the bio-chemistry domain, such as precision localisation and templated self-assembly to solid state quantum optics.
该项目研究了一种有前途的固态架构,可以扩展到构建量子信息处理器。我们专注于一个很容易理解的系统,即钻石中的nv缺陷中心。该中心具有基态自旋,与光子耦合良好,因此可以设想由低损耗波导耦合的自旋阵列。然而,与原子系统相比,固态带来了更多的退相干和光谱不均匀性。它还带来了使用纳米制造大规模构建自旋和光子界面的前景。在这里,我们的目标是单独解决固态发射器控制它们的自旋,并使它们在光谱上无法区分,从而确保高保真自旋量子比特由芯片上的波导连接。虽然固态量子光子学界的大部分焦点都致力于寻找一种表现出原子状特性的理想固态发射器,但在如何围绕它们构建复杂的光电系统以实现精确的光学和自旋控制方面却花费了相对较少的精力。这一点尤其重要,因为传统的自上而下的半导体制造方法不能直接应用于这种自下而上的系统。由于完全纠错的量子计算机将需要O(1E6)个量子比特,甚至近期噪声中尺度量子(NISQ)设备也需要O(1E2)个量子比特来证明计算量子霸权,因此迫切需要建立采用固态发射体的自下而上系统可以扩大规模,以与自上而下制造的系统(例如用于线性光学和超导电路的系统)竞争。NV-中心提供了一个可以访问和操纵的具有光学和自旋自由度的室温量子系统,这个室温读数使NV-中心在电气和光学领域对设备的快速迭代和原型设计具有吸引力。此外,纳米金刚石形式的高相干NV-中心的现成可用性使我们能够直接实现自下而上的制造方法,这些方法最初是在生物化学领域开发的,例如精确定位和模板自组装到固态量子光学。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robotic Vectorial Field Alignment for Spin-Based Quantum Sensors.
- DOI:10.1002/advs.202304449
- 发表时间:2024-01
- 期刊:
- 影响因子:15.1
- 作者:Smith, Joe A.;Zhang, Dandan;Balram, Krishna C.
- 通讯作者:Balram, Krishna C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishna Coimbatore Balram其他文献
Krishna Coimbatore Balram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishna Coimbatore Balram', 18)}}的其他基金
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
Next generation Acoustic Wave Filter Platform
下一代声波滤波器平台
- 批准号:
EP/W035359/1 - 财政年份:2023
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
Guiding, Localizing and IMaging confined GHz acoustic waves in GaN Elastic waveguides and Resonators for monolithically integrated RF front-ends
用于单片集成射频前端的 GaN 弹性波导和谐振器中的有限 GHz 声波的引导、定位和成像
- 批准号:
EP/V005286/1 - 财政年份:2021
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
GASP: Gallium Arsenide (III-V) photonic integrated circuits built like Silicon Photonics
GASP:砷化镓 (III-V) 光子集成电路,类似于硅光子学
- 批准号:
EP/V052179/1 - 财政年份:2021
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
SCREAM: Synthesizing and Controlling Resonant Electric and Magnetic near fields using piezoelectric micro-resonators
SCREAM:使用压电微谐振器合成和控制谐振电和磁近场
- 批准号:
EP/V048856/1 - 财政年份:2021
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: FET: A Top-down Compilation Infrastructure for Optimization and Debugging in the Noisy Intermediate Scale Quantum (NISQ) era
职业:FET:用于噪声中级量子 (NISQ) 时代优化和调试的自上而下的编译基础设施
- 批准号:
2421059 - 财政年份:2024
- 资助金额:
$ 109.27万 - 项目类别:
Continuing Grant
Chip-scale Atomic Systems for a Quantum Navigator
用于量子导航器的芯片级原子系统
- 批准号:
EP/X012689/1 - 财政年份:2023
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
- 批准号:
2238096 - 财政年份:2023
- 资助金额:
$ 109.27万 - 项目类别:
Continuing Grant
Towards deterministic atomic scale manufacturing of next-generation quantum devices
迈向下一代量子器件的确定性原子尺度制造
- 批准号:
EP/X021963/1 - 财政年份:2023
- 资助金额:
$ 109.27万 - 项目类别:
Fellowship
Printed Infrared Quantum Dot Photodetectors and Large-scale Image Sensors
印刷红外量子点光电探测器和大型图像传感器
- 批准号:
DE230101711 - 财政年份:2023
- 资助金额:
$ 109.27万 - 项目类别:
Discovery Early Career Researcher Award
Quantum-enabled Nano-scale Rheology Of The Microbial Seawater Environment
微生物海水环境的量子纳米级流变学
- 批准号:
EP/X035689/1 - 财政年份:2023
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
Quantum-Assisted Flood Modeling: Pioneering Large-Scale Analysis for Enhanced Risk Assessment
量子辅助洪水建模:开创性大规模分析以增强风险评估
- 批准号:
10083669 - 财政年份:2023
- 资助金额:
$ 109.27万 - 项目类别:
Small Business Research Initiative
CAREER: The Research of Noise-Aware Scheduling for Noisy Intermediate-Scale Quantum Systems
职业:噪声中尺度量子系统的噪声感知调度研究
- 批准号:
2238734 - 财政年份:2023
- 资助金额:
$ 109.27万 - 项目类别:
Standard Grant
Quantum-enabled nano-scale rheology of the microbial seawater environment
微生物海水环境的量子纳米级流变学
- 批准号:
EP/X035905/1 - 财政年份:2023
- 资助金额:
$ 109.27万 - 项目类别:
Research Grant
ExpandQISE: Track 1: Micron Scale Solid State Quantum Sensors Optimized through Machine Learning
ExpandQISE:轨道 1:通过机器学习优化微米级固态量子传感器
- 批准号:
2329242 - 财政年份:2023
- 资助金额:
$ 109.27万 - 项目类别:
Standard Grant