Photonic Ultra-high-Q REsonators (PURE)
光子超高 Q 谐振器 (PURE)
基本信息
- 批准号:EP/Z531169/1
- 负责人:
- 金额:$ 162.47万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Photonic ring resonators are miniature optical waveguiding structures that enable light to reach very high intensities in closed, circular paths. The loop structure and wave nature of light results in interference of the field such that the system becomes highly resonant with a repeated pattern. Each ring supports a comb of highly defined, specific frequencies of light, the spacing between which depends on the optical path length of the ring. In devices with a high-quality factor (high-Q), the optical circulating power can build up from a small milliwatt input signal to reach kilowatts of circulating power. The small, guided area of these devices results in immense power densities, permitting non-linear optical effects at remarkably low powers, despite the host material having low intrinsic non-linear properties. However, the achievable quality (Q) of such resonators has so far been limited by the losses caused by the absorption and scattering of light by the materials and structures used to fabricate the ring.The last 20 years have enabled significant progress in integrated photonics (optical circuits that guide and manipulate light analogous to the microchip in electronics), including the reduction of loss. Refined processes using CMOS-based cleanroom techniques have allowed researchers to improve optical transmission from 10% per metre to approximately 99.9% per metre in miniaturised optical chips. This has enabled the fabrication of optical microresonators with ultra-high-Q factors (over 100 million). These wafer-based devices form key components in advanced integrated photonic circuits for narrow linewidth lasers and frequency combs. The first generation of these devices has enabled compact systems for radar as well as for precision timing and navigation.Despite significant progress in the field, waveguide loss in state-of-the-art integrated photonics devices has plateaued at 100x higher losses than those readily achieved in standard telecoms optical fibre used for long-haul broadband internet. This limit is not fundamental but technological, and if fibre-like losses could also be achieved in an integrated photonics package, this would enable a new generation of applications and improvements in performance. These include compact, robust gyroscopes and low-power frequency combs for navigation and precision timing, ultra-narrow linewidth lasers (mHz to Hz), and advanced photonic components for telecommunication networks.This proposal seeks to combine the benefits of optical fibre fabrication approaches and material science developed over the past 50 years with the latest state-of-the-art CMOS fabrication techniques used for integrated optics. We aim to develop a manufacturing technique that will produce integrated ring resonator devices with the highest Q ever achieved. Using flame hydrolysis deposition and other standard optical fibre manufacturing techniques, we will develop ultra-pure glass layers to negate absorption losses. In particular, we will focus on high phosphorus and germanium doping, which we have shown can lead to dramatically better uniformity during our recent Caltech-Southampton DARPA seed project. We will use optical fibre manufacturing techniques to reduce loss from absorbed hydrogen and develop diffusion and reflow processes to remove waveguide interface and scattering losses.Our ambition is to develop the foundations for a scalable manufacturing process for the next generation of ultra-high-Q micro-ring resonators. These devices will enable a range of new technologies, including rugged miniature gyroscopes for navigation, combs for precision timing in data networks and optical sources for quantum technologies.
光子环形谐振器是微型光学波导结构,其使得光能够在封闭的圆形路径中达到非常高的强度。光的环结构和波性质导致场的干涉,使得系统变得与重复图案高度共振。每个环都支持高度定义的特定频率的光梳,光梳之间的间距取决于环的光路长度。在具有高品质因数(高Q)的设备中,光循环功率可以从小毫瓦输入信号积累到达到千瓦的循环功率。这些器件的小的引导区域导致巨大的功率密度,允许在非常低的功率下的非线性光学效应,尽管主体材料具有低的固有非线性特性。然而,到目前为止,这种谐振器的可实现质量(Q)受到用于制造环的材料和结构对光的吸收和散射所造成的损失的限制。过去20年,集成光子学(类似于电子学中的微芯片,引导和操纵光的光学电路)取得了重大进展,包括减少损失。使用基于CMOS的洁净室技术的精细工艺使研究人员能够将光学芯片的光传输从每米10%提高到每米约99.9%。这使得具有超高Q因子(超过1亿)的光学微谐振器的制造成为可能。这些基于晶片的器件构成了窄线宽激光器和频率梳的先进集成光子电路的关键部件。这些器件的第一代产品已使雷达以及精密定时和导航系统变得更加紧凑。尽管在该领域取得了重大进展,但最先进的集成光子器件中的波导损耗已经达到稳定水平,比用于长距离宽带互联网的标准电信光纤中的损耗高出100倍。这种限制不是根本性的,而是技术性的,如果在集成光子封装中也可以实现类似光纤的损耗,这将实现新一代的应用和性能改进。这些包括用于导航和精确定时的紧凑、坚固的陀螺仪和低功率频率梳、超窄线宽激光器(mHz至Hz)以及用于电信网络的先进光子元件。该提案旨在将过去50年来发展的光纤制造方法和材料科学的优点与用于集成光学的最新最先进的CMOS制造技术联合收割机结合起来。我们的目标是开发一种制造技术,将生产集成的环形谐振器设备具有有史以来最高的Q。使用火焰水解沉积和其他标准的光纤制造技术,我们将开发超纯玻璃层,以消除吸收损失。特别是,我们将专注于高磷和锗掺杂,我们已经证明,这可以导致显着更好的均匀性,在我们最近的加州理工学院-南安普敦DARPA种子项目。我们将使用光纤制造技术来减少吸收氢的损耗,并开发扩散和回流工艺来消除波导接口和散射损耗。我们的目标是为下一代超高Q微环谐振器的可扩展制造工艺奠定基础。这些设备将使一系列新技术成为可能,包括用于导航的坚固微型陀螺仪,用于数据网络精确计时的梳子以及用于量子技术的光源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Gates其他文献
SiO<sub>2</sub>-SnO<sub>2</sub>:Er<sup>3+</sup> planar waveguides: Highly photorefractive glass-ceramics
- DOI:
10.1016/j.omx.2020.100056 - 发表时间:
2020-08-01 - 期刊:
- 影响因子:
- 作者:
Thi Ngoc Lam Tran;Simone Berneschi;Cosimo Trono;Gualtiero Nunzi Conti;Lidia Zur;Cristina Armellini;Stefano Varas;Alessandro Carpentiero;Andrea Chiappini;Alessandro Chiasera;James Gates;Pier-John Sazio;Monica Bollani;Anna Lukowiak;Giancarlo C. Righini;Maurizio Ferrari - 通讯作者:
Maurizio Ferrari
James Gates的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Gates', 18)}}的其他基金
Ultra-precision machining of optoelectronics and microsystems (UPROAR)
光电和微系统超精密加工(UPROAR)
- 批准号:
EP/W024772/1 - 财政年份:2023
- 资助金额:
$ 162.47万 - 项目类别:
Research Grant
Dissemination of Information from Sixth International Congress of Mathematical Education
第六届国际数学教育大会信息发布
- 批准号:
8751432 - 财政年份:1987
- 资助金额:
$ 162.47万 - 项目类别:
Standard Grant
相似国自然基金
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
- 批准号:31471690
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
- 批准号:60976066
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
Ultra-high precision control of bosonic states in superconducting resonators with second-order nonlinear effects
具有二阶非线性效应的超导谐振器中玻色子态的超高精度控制
- 批准号:
22KJ0981 - 财政年份:2023
- 资助金额:
$ 162.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Spiraling Into Control: Ultra High-Impedance Superconducting Resonators for Strongly-Coupled Spin-Cavity QED
螺旋进入控制:用于强耦合自旋腔 QED 的超高阻抗超导谐振器
- 批准号:
2210309 - 财政年份:2022
- 资助金额:
$ 162.47万 - 项目类别:
Continuing Grant
Ultra-sensitive mass detection of ppt-level gas molecules with graphene nanomechanical resonators
利用石墨烯纳米机械谐振器对ppt级气体分子进行超灵敏质量检测
- 批准号:
20F20060 - 财政年份:2020
- 资助金额:
$ 162.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Magneto-optical metamaterials consisting of antiferromagnetically coupled plasmon resonators for ultra-sensitive chiral molecular measurement systems
由反铁磁耦合等离子体谐振器组成的磁光超材料,用于超灵敏手性分子测量系统
- 批准号:
20K05375 - 财政年份:2020
- 资助金额:
$ 162.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of ultra-stable cryogenic silicon optical resonators for laser frequency stabilization
开发用于激光频率稳定的超稳定低温硅光学谐振器
- 批准号:
279028307 - 财政年份:2015
- 资助金额:
$ 162.47万 - 项目类别:
Research Grants
Demonstration of on-chip low-dispersion ultra-wideband spectrograph for submm wavelengths using super-conducting resonators
使用超导谐振器演示亚毫米波长片上低色散超宽带摄谱仪
- 批准号:
25247019 - 财政年份:2013
- 资助金额:
$ 162.47万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Intrinsically-Compensated Ultra-High-Q Silicon Resonators
本质补偿超高 Q 硅谐振器
- 批准号:
1057320 - 财政年份:2010
- 资助金额:
$ 162.47万 - 项目类别:
Standard Grant
Ultra-precision cutting and polishing machines for fabricating high-Q crystalline resonators
用于制造高 Q 晶体谐振器的超精密切割和抛光机
- 批准号:
LE100100009 - 财政年份:2010
- 资助金额:
$ 162.47万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Nanoelectrometchanical resonators as ultra-sensitive molecular sensors
作为超灵敏分子传感器的纳米机电谐振器
- 批准号:
312453-2005 - 财政年份:2009
- 资助金额:
$ 162.47万 - 项目类别:
Discovery Grants Program - Individual
Integration of ultra-cold atoms in microphotonic resonators
超冷原子在微光子谐振器中的集成
- 批准号:
343238-2007 - 财政年份:2009
- 资助金额:
$ 162.47万 - 项目类别:
Postdoctoral Fellowships