Modelling Interest Rate Dynamics: A Flexible and Efficient Nonparametric Likelihood Approach

利率动态建模:灵活高效的非参数似然方法

基本信息

  • 批准号:
    ES/J00622X/1
  • 负责人:
  • 金额:
    $ 9.87万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Interest rates are a part of everyday life. They are fundamental in the allocation of financial resources in the economy and hence have profound implications on almost every aspect of its operation, from consumer spending to firm production to financial investments, as well as on employment, inflation, and growth.Interest rates on debt instruments having maturities of less than one year are known as short term interest rates. In the context of financial markets, the dynamics of short term interest rates are central to the valuation of all economic and financial assets whose values crucially depend on them. Therefore, understanding short term interest rate dynamics is now a major concern of both academics and practitioners.The greatest challenge in modeling short term interest rates is the dilemma between the quest for flexibility in capturing complex features of interest rate dynamics and the desire for tractability and efficiency in the implementation of the model. Existing methods in the literature generally either fail to account for short rate dynamics adequately or lack efficiency in drawing inferences from data in a manner that is convenient and informative.Thus the overall objective of this project is to develop a flexible and efficient new likelihood based approach for modeling interest rate dynamics. Specifically, this project aims to propose a flexible nonparametric specification for a class of stochastic differential equations and develop likelihood based inferential procedures and investigate nonparametric efficiency in that context. It also intends to extend the approach to multivariate case and test the applicability and suitability of the new methodology in a range of substantive empirical problems in which interest rates feature.This project, with its range of innovative methodological, theoretical and empirical proposals, promises new advances on the interest rate modeling front. Crucially, the approaches advocated here for using nonparametric RSDEs are completely new, and fill a substantial gap in a literature still dominated by parametric approaches. The use of Empirical Likelihood in this context is also novel. The methodology developed in this proposal will also provide extensive scope for significant empirical contributions to the discipline, given the wide range of empirical problems in which interest rates are concerned.Although the proposed approach is developed in the context of interest rate modeling, it is general enough to have a methodological impact in the broad realm of stochastic analysis, with substantial applicability to non-economic disciplines such as statistics, physics, engineering, chemistry, medical science, and so on.
利率是日常生活的一部分。利率是经济中金融资源分配的基础,因此对经济运行的几乎每一个方面都有深远的影响,从消费支出到企业生产,再到金融投资,以及就业,通货膨胀和增长。期限少于一年的债务工具的利率被称为短期利率。在金融市场的背景下,短期利率的动态对所有经济和金融资产的估值至关重要,这些资产的价值在很大程度上取决于它们。因此,理解短期利率动态是目前学术界和实务界关注的主要问题,短期利率模型的最大挑战是在追求捕捉利率动态复杂特征的灵活性和实现模型的易处理性和效率之间的两难选择。现有的方法在文献中通常不能充分考虑短期利率动态或缺乏效率,从数据中得出的推论的方式是方便和informations.Thus,本项目的总体目标是开发一个灵活和高效的新的基于似然模型的方法来建模利率动态。具体来说,这个项目的目的是提出一个灵活的非参数规范的一类随机微分方程,并开发基于似然推理程序,并调查在这种情况下的非参数效率。本项目旨在将该方法扩展到多变量情形,并在一系列具有利率特征的实质性实证问题中检验新方法的适用性和适用性,该项目以其一系列创新的方法论、理论和实证建议,有望在利率建模方面取得新的进展。至关重要的是,这里提倡使用非参数RSDES的方法是全新的,填补了文献中仍然由参数方法主导的重大空白。在这种情况下使用经验似然法也是新颖的。考虑到利率所涉及的广泛的实证问题,本提案中开发的方法也将为该学科的重大实证贡献提供广泛的范围。尽管所提出的方法是在利率建模的背景下开发的,但它足够普遍,可以在随机分析的广泛领域产生方法学影响,具有对非经济学科如统计学、物理学、工程学、化学、医学科学等的实质性适用性。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniform Convergence of Kernel Diffusion Estimator for Possibly Nonstationary Diffusions
可能非平稳扩散的核扩散估计器的一致收敛
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bu, R
  • 通讯作者:
    Bu, R
Diffusion copulas: Identification and estimation
  • DOI:
    10.1016/j.jeconom.2020.06.004
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Ruijun Bu;K. Hadri;Dennis Kristensen
  • 通讯作者:
    Ruijun Bu;K. Hadri;Dennis Kristensen
Uniform and L p convergences for nonparametric continuous time regressions with semiparametric applications
半参数应用非参数连续时间回归的均匀收敛和 L p 收敛
  • DOI:
    10.1016/j.jeconom.2023.02.006
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Bu R
  • 通讯作者:
    Bu R
Reducible diffusions with time-varying transformations with application to short-term interest rates
具有时变变换的可约扩散及其应用于短期利率
  • DOI:
    10.1016/j.econmod.2014.10.039
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Bu R
  • 通讯作者:
    Bu R
A multifactor transformed diffusion model with applications to VIX and VIX futures
多因素转换扩散模型及其在 VIX 和 VIX 期货中的应用
  • DOI:
    10.1080/07474938.2019.1690195
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Bu R
  • 通讯作者:
    Bu R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruijun Bu其他文献

Estimating Option Implied Risk-Neutral Densities Using Spline and Hypergeometric Functions
使用样条函数和超几何函数估计期权隐含风险中性密度
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruijun Bu;K. Hadri
  • 通讯作者:
    K. Hadri
A Bayesian approach to continuous type principal-agent problems
  • DOI:
    10.1016/j.ejor.2019.07.058
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    A. George Assaf;Ruijun Bu;Mike G. Tsionas
  • 通讯作者:
    Mike G. Tsionas
Modelling Multivariate Interest Rates using Time-Varying Copulas and Reducible Non-Linear Stochastic Di ¤ erential Equations
使用时变 Copula 和可约非线性随机微分方程对多元利率进行建模
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruijun Bu
  • 通讯作者:
    Ruijun Bu
Uniform and Lp Convergences for Nonparametric Continuous Time Regressions With Semiparametric Applications
半参数应用中非参数连续时间回归的一致收敛和 Lp 收敛
  • DOI:
    10.2139/ssrn.4732734
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruijun Bu;Jihyun Kim;Bin Wang
  • 通讯作者:
    Bin Wang
Does the volatility of volatility risk forecast future stock returns?
波动风险的波动能否预测未来股票收益?

Ruijun Bu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A dynamic general equilibrium analysis of macroeconomic problems in an ultra-low interest rate environment
超低利率环境下宏观经济问题的动态一般均衡分析
  • 批准号:
    21K01577
  • 财政年份:
    2021
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Long - Term Interest Rate under the Monetary Policy of Negative Interest Rate : Analyses of Market Structure and Function
负利率货币政策下的长期利率:市场结构与功能分析
  • 批准号:
    21K01569
  • 财政年份:
    2021
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A numerical method for stochastic differential equations for interest rate modeling and regulation after the global financial crises of 2007-2008
2007-2008 年全球金融危机后利率建模和监管的随机微分方程数值方法
  • 批准号:
    21K03365
  • 财政年份:
    2021
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The natural interest rate in semi-structural unobserved components models
半结构不可观测成分模型中的自然利率
  • 批准号:
    437769753
  • 财政年份:
    2020
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Research Grants
Stochastic simulations of dynamic asset and interest rate models
动态资产和利率模型的随机模拟
  • 批准号:
    544840-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 9.87万
  • 项目类别:
    University Undergraduate Student Research Awards
Post-Crisis Interest Rate Markets: Analysing, Modelling and Stress Testing of Multiple Yield Curves
危机后利率市场:多重收益率曲线的分析、建模和压力测试
  • 批准号:
    416416014
  • 财政年份:
    2019
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Research Grants
A Fundamental Study on Financial Trends in Medieval Japan ~Change in Interest Rate , Loan Period , Security, and Law ~
中世纪日本金融动向的基础研究~利率、贷款期限、安全性、法律的变化~
  • 批准号:
    19K01783
  • 财政年份:
    2019
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Econometric analysis of monetary and exchange rate policies under the influence of negative interest rates and cryptocurrencies
负利率和加密货币影响下货币汇率政策的计量分析
  • 批准号:
    18K01600
  • 财政年份:
    2018
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the Factors Driving Financial Over-Indebtedness and the Impacts of the Interest Rate Ceiling on the Microfinance Sector: The Cambodian Case and International Comparison Analysis
金融过度负债的驱动因素及利率上限对小额信贷行业的影响研究:柬埔寨案例与国际比较分析
  • 批准号:
    18K01604
  • 财政年份:
    2018
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Empirical Analysis on Market Interest Rates under Negative Interest Rate Policy in Japan
日本负利率政策下市场利率实证分析
  • 批准号:
    18K01709
  • 财政年份:
    2018
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了