MECHANISMS IN HAEMOPOIETIC DIFFERENTIATION: INSIGHTS FROM NOVEL LOCI IN GENETIC THROMBOCYTOPENIA

造血分化机制:来自遗传性血小板减少症新基因座的见解

基本信息

  • 批准号:
    MR/K023489/1
  • 负责人:
  • 金额:
    $ 28.52万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

My overall research objective is to improve understanding of how specialised cells in sites such as the blood or blood vessels develop from stem cells. This knowledge is essential for new stem cell treatments for common illnesses such as heart disease and cancer. My research will focus on how stem cells develop into blood platelets. However, my research findings will be applicable to other cell types, particularly other blood cells and cells that form new blood vessels. Platelets are cell-like components of blood that are made in the bone marrow by the process of differentiation, in which stem cells develop into progressively more specialised cell types. The final cell in this pathway is the megakaryocyte which then fragments to form platelets. Platelet formation is controlled by many proteins, each of which is made from a different gene. It is not fully understood which proteins and genes are involved in platelet formation, or how these are regulated.The principle behind my research is that people with naturally occurring faults in genes involved in platelet formation will have reduced numbers of platelets in the blood (thrombocytopenia). Therefore, I will carefully select study subjects with thrombocytopenia of likely genetic cause, search for new genetic faults and then test experimentally how these affect platelet formation. This strategy enabled my co-supervisor Prof Ouwehand and others to discover that faults in the RBM8A and NBEAL2 genes cause the rare Gray Platelet and Thrombocytopenia Absent Radii syndromes in which platelet formation is reduced. This research also clarified how these genes control normal platelet formation. I will extend the search for faulty genes that cause thrombocytopaenia by identifying study subjects with low platelet counts from two sources: 1) patients with severe thrombocytopenia causing bleeding registered at Haemophilia centres in SW England; and, 2) women from antenatal clinics in Bristol, Oxford and Cambridge with mild thrombocytopenia, detected on routine antenatal blood tests. In this group, non-genetic causes of thrombocytopenia are common. However, I will use additional blood tests and expert input from obstetric haematologists to help identify women with a high likelihood of genetic thrombocytopenia. With help from the NIHR-BioResource centre for rare diseases, I will invite participants to give DNA samples for analysis at The Wellcome Trust Sanger Institute. I will use 'next generation sequencing' technology to look at the DNA sequence in all human genes that make proteins (ExoSeq) and some DNA sequences that regulate these genes. I will link my results with the Europe-wide BRIGDE study (co-ordinated by Prof Ouwehand) which will provide Exoseq results from 1000 patients with bleeding disorders, including some with genetic thrombocytopenia. This will help confirm that gene faults identified in the study subjects are the cause of thrombocytopenia.I will spend most of my research study investigating the precise role of one new faulty gene in platelet formation. This will involve several state-of-the-art laboratory techniques developed by my supervisors and collaborators, including detailed re-analysis of blood cells from selected study participants. I will analyse the effect of 'switching off' the gene in well-tested model systems and in stem cells purified from blood samples and differentiated in the laboratory to form megakaryocytes and other cells. I will identify how the protein made from the gene interacts with other proteins. My research will reveal new genes that are important for platelet production. It will also identify the precise role of one new gene in how stem cells differentiate to form platelets and other specialised cells. These findings will have broader relevance to stem cell biology and will assist development of cellular regenerative therapies for common disorders.
我的总体研究目标是提高对血管或血管等部位的特化细胞如何从干细胞发育的理解。这一知识对于心脏病和癌症等常见疾病的新干细胞疗法至关重要。我的研究将集中在干细胞如何发育成血小板。然而,我的研究成果将适用于其他类型的细胞,特别是其他血细胞和形成新血管的细胞。血小板是血液中的类细胞成分,通过分化过程在骨髓中生成,在分化过程中干细胞逐渐发展为更特殊的细胞类型。这一途径中的最后一个细胞是巨核细胞,然后巨核细胞碎裂形成血小板。血小板的形成由许多蛋白质控制,每一种蛋白质都由不同的基因组成。目前还不完全了解哪些蛋白质和基因参与了血小板的形成,或者这些蛋白质和基因是如何调节的。我研究背后的原理是,参与血小板形成的基因存在自然缺陷的人会减少血液中的血小板数量(血小板减少症)。因此,我将仔细选择可能由遗传原因引起的血小板减少症的研究对象,寻找新的遗传缺陷,然后通过实验测试这些缺陷如何影响血小板形成。这一策略使我的合作主管欧维汉德教授和其他人发现,RBM8A和NBEAL2基因的缺陷会导致罕见的灰色血小板和无血小板减少的半径综合征,在这些综合症中,血小板形成减少。这项研究还阐明了这些基因是如何控制正常的血小板形成的。我将扩大对导致血小板减少症的缺陷基因的搜索,确定血小板计数低的研究对象来自两个来源:1)在英格兰西南部的血友病中心登记的严重血小板减少症患者;以及2)来自布里斯托尔、牛津和剑桥产前诊所的妇女,在常规产前血液测试中发现有轻度血小板减少症。在这一组中,导致血小板减少的非遗传原因很常见。然而,我将使用额外的血液测试和产科血液学家的专家意见来帮助识别遗传性血小板减少症的高可能性女性。在NIHR-罕见病生物资源中心的帮助下,我将邀请参与者提供DNA样本,供威康信托桑格研究所分析。我将使用‘下一代测序’技术来研究所有人类制造蛋白质的基因(Exoseq)中的DNA序列,以及一些调节这些基因的DNA序列。我将把我的研究结果与全欧洲范围的Brigde研究(由奥韦汉德教授协调)联系起来,该研究将提供1000名出血性疾病患者的Exoseq结果,其中包括一些遗传性血小板减少症患者。这将有助于确认在研究对象中发现的基因缺陷是导致血小板减少的原因。我将在研究的大部分时间里调查一个新的缺陷基因在血小板形成中的确切作用。这将涉及由我的主管和合作者开发的几项最先进的实验室技术,包括对选定研究参与者的血细胞进行详细的重新分析。我将在经过良好测试的模型系统中,以及从血液样本中提纯并在实验室分化成巨核细胞和其他细胞的干细胞中,分析“关闭”该基因的效果。我将确定由该基因产生的蛋白质如何与其他蛋白质相互作用。我的研究将揭示对血小板生成很重要的新基因。它还将确定一种新基因在干细胞如何分化形成血小板和其他特化细胞中的确切作用。这些发现将对干细胞生物学具有更广泛的相关性,并将有助于开发针对常见疾病的细胞再生疗法。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.
  • DOI:
    10.1161/circulationaha.117.028351
  • 发表时间:
    2017-11-21
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    Hadinnapola C;Bleda M;Haimel M;Screaton N;Swift A;Dorfmüller P;Preston SD;Southwood M;Hernandez-Sanchez J;Martin J;Treacy C;Yates K;Bogaard H;Church C;Coghlan G;Condliffe R;Corris PA;Gibbs S;Girerd B;Holden S;Humbert M;Kiely DG;Lawrie A;Machado R;MacKenzie Ross R;Moledina S;Montani D;Newnham M;Peacock A;Pepke-Zaba J;Rayner-Matthews P;Shamardina O;Soubrier F;Southgate L;Suntharalingam J;Toshner M;Trembath R;Vonk Noordegraaf A;Wilkins MR;Wort SJ;Wharton J;NIHR BioResource–Rare Diseases Consortium; UK National Cohort Study of Idiopathic and Heritable PAH;Gräf S;Morrell NW
  • 通讯作者:
    Morrell NW
Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.
端粒:一种倍性 - 敏锐的方法,用于从整个基因组测序数据中估算端粒长度。
  • DOI:
    10.1038/s41598-017-14403-y
  • 发表时间:
    2018-01-22
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Farmery JHR;Smith ML;NIHR BioResource - Rare Diseases;Lynch AG
  • 通讯作者:
    Lynch AG
Transcriptional diversity during lineage commitment of human blood progenitors.
  • DOI:
    10.1126/science.1251033
  • 发表时间:
    2014-09-26
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen L;Kostadima M;Martens JHA;Canu G;Garcia SP;Turro E;Downes K;Macaulay IC;Bielczyk-Maczynska E;Coe S;Farrow S;Poudel P;Burden F;Jansen SBG;Astle WJ;Attwood A;Bariana T;de Bono B;Breschi A;Chambers JC;Consortium B;Choudry FA;Clarke L;Coupland P;van der Ent M;Erber WN;Jansen JH;Favier R;Fenech ME;Foad N;Freson K;van Geet C;Gomez K;Guigo R;Hampshire D;Kelly AM;Kerstens HHD;Kooner JS;Laffan M;Lentaigne C;Labalette C;Martin T;Meacham S;Mumford A;Nürnberg S;Palumbo E;van der Reijden BA;Richardson D;Sammut SJ;Slodkowicz G;Tamuri AU;Vasquez L;Voss K;Watt S;Westbury S;Flicek P;Loos R;Goldman N;Bertone P;Read RJ;Richardson S;Cvejic A;Soranzo N;Ouwehand WH;Stunnenberg HG;Frontini M;Rendon A
  • 通讯作者:
    Rendon A
How should we test for nonsevere heritable platelet function disorders?
我们应该如何检测非严重遗传性血小板功能障碍?
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Westbury其他文献

Sarah Westbury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Regulation of Haemopoietic and Immune Cells in Health and Disease
健康和疾病中造血细胞和免疫细胞的调节
  • 批准号:
    nhmrc : GNT1113577
  • 财政年份:
    2017
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Programs
Regulation of Haemopoietic and Immune Cells in Health and Disease
健康和疾病中造血细胞和免疫细胞的调节
  • 批准号:
    nhmrc : 1113577
  • 财政年份:
    2017
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Program Grants
Heterogeneity within the ageing human haemopoietic compartment and predisposition to cancer
衰老人类造血室内的异质性和癌症易感性
  • 批准号:
    1951732
  • 财政年份:
    2017
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Studentship
Patient tailored anti-tumour T cells to prevent relapse in patients with acute myeloid leukaemia undergoing allogeneic haemopoietic stem cell transplantation
为患者量身定制抗肿瘤T细胞,以预防接受同种异体造血干细胞移植的急性髓系白血病患者复发
  • 批准号:
    nhmrc : GNT1089398
  • 财政年份:
    2015
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Early Career Fellowships
Patient tailored anti-tumour T cells to prevent relapse in patients with acute myeloid leukaemia undergoing allogeneic haemopoietic stem cell transplantation
为患者量身定制抗肿瘤T细胞,以预防接受同种异体造血干细胞移植的急性髓系白血病患者复发
  • 批准号:
    nhmrc : 1089398
  • 财政年份:
    2015
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Early Career Fellowships
Bone marrow Endothelial Stem Cells have the capacity to form both the endothelial and haemopoietic hierarchies
骨髓内皮干细胞具有形成内皮和造血层次结构的能力
  • 批准号:
    nhmrc : GNT1084990
  • 财政年份:
    2015
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Project Grants
Bone marrow Endothelial Stem Cells have the capacity to form both the endothelial and haemopoietic hierarchies
骨髓内皮干细胞具有形成内皮和造血层次结构的能力
  • 批准号:
    nhmrc : 1084990
  • 财政年份:
    2015
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Project Grants
A clinical trial of partially HLA-matched unrelated donor microtransplantation for prevention of relapse in patients with acute myeloid leukaemia ineligible for standard haemopoietic stem cell transplantation
部分 HLA 匹配的无关供体微移植预防不适合标准造血干细胞移植的急性髓系白血病患者复发的临床试验
  • 批准号:
    nhmrc : 1061252
  • 财政年份:
    2014
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Project Grants
Investigating a novel role for the haemopoietic growth factor receptor, c-Mpl, in regulating shear-dependent platelet adhesive function
研究造血生长因子受体 c-Mpl 在调节剪切依赖性血小板粘附功能中的新作用
  • 批准号:
    nhmrc : 1066956
  • 财政年份:
    2014
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Project Grants
Establishment of the haemopoietic transcriptional programme: From systems approaches to molecular mechanisms
造血转录程序的建立:从系统方法到分子机制
  • 批准号:
    BB/I00050X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了