Establishment of the haemopoietic transcriptional programme: From systems approaches to molecular mechanisms

造血转录程序的建立:从系统方法到分子机制

基本信息

  • 批准号:
    BB/I00050X/1
  • 负责人:
  • 金额:
    $ 115.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Our genes control how our body develops from one fertilized egg cell and all cells in our body contain the same set of genes. This cell rapidly divides and develops into a large variety of distinct cell types that make up the various organs in our body. All these cells express different genetic programs, meaning that not all of our genes are always active in every cell type. This cell-type-specific gene activation pattern is governed by another layer of control (on top of the layer of the genes) that tells cells which genes to switch on and off, thereby deciding which cell type develops. This additional control layer is called the 'epigenetic' layer and consists of two components: (1) a genome-wide network through which genes regulate each other to generate the appropriate gene expression patterns; (2) the DNA packing apparatus. Each cell contains one meter of DNA, and to be able to fit it into the nucleus, it is densely compacted by so called chromatin proteins such that inactive genes are highly compact and their DNA hidden, whereas active genes are in areas of reduced compaction. To activate an inactive, compact gene, protein complexes, so called 'transcription factors' push chromatin aside or modify it, so that genes become accessible to the factors that activate them. Studies in the past years focused on one gene at a time and led to the discovery of the transcription factors and chromatin components that control their activity. We learned to extract the tune that individual genes play but failed to hear the symphony. Our understanding of how all the genes in mammals are orchestrated to switch on and off in the right order is still superficial. Moreover, much of what we know is based on studies from cell lines, which represent fixed cell types or are cancer cells, and from simpler organisms, such as yeast. The situation in mammals is much more complex because building an organism from a fertilized egg involves turning one cell type into another (so called 'differentiation') in a precise hierarchical order which requires tight coordination of the activity of all the genes. In other words, building an organism is like building a house: we have to put the individual components together in a precise order and not start with the roof before the cellar. This proposal will use blood cell development in the mouse as a model to investigate the dynamics of cell differentiation in mammals. We will study all genes of a given cell type and use a sophisticated in vitro system based on embryonic stem cells where we can generate and purify different blood cell types. We then will identify which transcription factors and chromatin components regulate which genes at the different developmental stages and study at which level and when they are expressed. Until recently such global or 'systems biology' studies were beyond reach since the technology was lacking. However, with the latest technology we can determine the entire DNA sequence of one cell type in a very short time. This technology has been modified to study epigenetic changes at all genes and can now be used to identify what distinguishes genes of one cell type from those of another. However, one feature of such experiments is that they produce enormous amounts of data and require specialist knowledge to make sense of them. This is achieved by bioinformaticians developing new computer programs and mathematical modelers running simulations to predict the integrated, 'collective' behavior of genes. To this end we have formed an interdisciplinary consortium consisting of experimental researchers and computational biologists who will collaborate to understand how thousands of genes work together to generate specific cell types. The ultimate aim of these studies is to be able to understand how individual development is encoded in the DNA-sequence and to predict how changes in the DNA sequence impact on developmental processes.
我们的基因控制我们的身体如何从一个受精卵细胞发育,我们身体中的所有细胞都包含相同的基因组。这种细胞迅速分裂并发育成各种不同的细胞类型,组成我们身体的各种器官。所有这些细胞都表达不同的基因程序,这意味着并非所有的基因在每种细胞类型中都始终活跃。这种细胞类型特异性基因激活模式由另一层控制(在基因层之上)控制,该控制告诉细胞哪些基因打开和关闭,从而决定哪种细胞类型的发展。这个额外的控制层被称为“表观遗传”层,由两个组成部分组成:(1)基因组范围的网络,基因通过该网络相互调节以产生适当的基因表达模式;(2)DNA包装装置。每个细胞含有一米的DNA,为了能够将其装入细胞核,它被所谓的染色质蛋白质紧密压缩,使得非活性基因高度紧凑,它们的DNA隐藏,而活性基因位于压缩减少的区域。为了激活一个不活跃的紧凑基因,蛋白质复合物,所谓的“转录因子”将染色质推到一边或对其进行修改,以便基因可以接近激活它们的因子。过去几年的研究集中在一个基因上,并导致了控制其活性的转录因子和染色质成分的发现。我们学会了提取单个基因演奏的曲调,但却听不到交响乐。我们对哺乳动物的所有基因是如何按照正确的顺序进行启动和关闭的理解仍然很肤浅。此外,我们所知道的大部分是基于对细胞系的研究,这些细胞系代表固定的细胞类型或癌细胞,以及来自更简单的生物体,如酵母。哺乳动物的情况要复杂得多,因为从受精卵构建生物体涉及到以精确的等级顺序将一种细胞类型转变为另一种细胞类型(所谓的“分化”),这需要所有基因的活动紧密协调。换句话说,建造一个有机体就像建造一座房子:我们必须将各个组件按照精确的顺序放在一起,而不是先从屋顶开始,然后再从地窖开始。该提案将使用小鼠的血细胞发育作为研究哺乳动物细胞分化动力学的模型。我们将研究给定细胞类型的所有基因,并使用基于胚胎干细胞的复杂体外系统,在那里我们可以生成和纯化不同的血细胞类型。然后,我们将确定哪些转录因子和染色质组分在不同的发育阶段调节哪些基因,并研究它们在哪个水平和何时表达。直到最近,这种全球性或“系统生物学”的研究是遥不可及的,因为缺乏技术。然而,通过最新的技术,我们可以在很短的时间内确定一种细胞类型的整个DNA序列。这项技术已经被修改,以研究所有基因的表观遗传变化,现在可以用来识别一种细胞类型的基因与另一种细胞类型的基因的区别。然而,这类实验的一个特点是,它们产生大量的数据,需要专业知识来理解它们。这是通过生物信息学家开发新的计算机程序和数学模型来实现的,数学模型运行模拟来预测基因的综合“集体”行为。为此,我们成立了一个由实验研究人员和计算生物学家组成的跨学科联盟,他们将合作了解数千个基因如何共同作用以产生特定的细胞类型。这些研究的最终目的是能够理解个体发育如何在DNA序列中编码,并预测DNA序列的变化如何影响发育过程。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterization of leukaemogenic regulatory networks in acute myeloid leukaemia
急性髓系白血病白血病调控网络的特征
  • DOI:
    10.1016/j.exphem.2016.06.088
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Basilico S
  • 通讯作者:
    Basilico S
Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory network model.
  • DOI:
    10.1093/bioinformatics/btt243
  • 发表时间:
    2013-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bonzanni N;Garg A;Feenstra KA;Schütte J;Kinston S;Miranda-Saavedra D;Heringa J;Xenarios I;Göttgens B
  • 通讯作者:
    Göttgens B
The transcription factor Erg regulates expression of HDAC6 and multiple pathways involved in endothelial cell migration and angiogenesis
转录因子 Erg 调节 HDAC6 的表达以及参与内皮细胞迁移和血管生成的多种途径
  • DOI:
    10.1016/j.vph.2011.08.120
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Birdsey G
  • 通讯作者:
    Birdsey G
The LMO2 -25 Region Harbours GATA2-Dependent Myeloid Enhancer and RUNX-Dependent T-Lymphoid Repressor Activity.
  • DOI:
    10.1371/journal.pone.0131577
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Bonadies N;Göttgens B;Calero-Nieto FJ
  • 通讯作者:
    Calero-Nieto FJ
Probabilistic PCA of censored data: accounting for uncertainties in the visualization of high-throughput single-cell qPCR data.
  • DOI:
    10.1093/bioinformatics/btu134
  • 发表时间:
    2014-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Buettner F;Moignard V;Göttgens B;Theis FJ
  • 通讯作者:
    Theis FJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Berthold Gottgens其他文献

GATA transcription in a small rhodamine 123(low)CD34(+) subpopulation of a peripheral blood-derived CD34(-)CD105(+) mesenchymal cell line.
外周血来源的 CD34(-)CD105( ) 间充质细胞系的小罗丹明 123(low)CD34( ) 亚群中的 GATA 转录。
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    C. Conrad;Berthold Gottgens;S. Kinston;J. Ellwart;R. Huss
  • 通讯作者:
    R. Huss
Edinburgh Research Explorer A GWAS sequence variant for platelet volume marks an alternative DNM3 promoter in megakaryocytes near a MEIS1 binding site
爱丁堡研究探索者血小板体积的 GWAS 序列变体标记了 MEIS1 结合位点附近巨核细胞中的替代 DNM3 启动子
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sylvia Nürnberg;A. Rendon;P. Smethurst;Dirk S. Paul;K. Voss;Jonathan N Thon;Heather Lloyd;J. Sambrook;M. R. Tijssen;J. Italiano;P. Deloukas;Berthold Gottgens;N. Soranzo;Willem H. Ouwehand
  • 通讯作者:
    Willem H. Ouwehand
p57Kip2 expands AGM HSCS non-cell autonomously via the sympathetic nervous system
  • DOI:
    10.1016/j.exphem.2017.06.060
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Katrin Ottersbach;Chrysa Kapeni;Nicola Wilson;Berthold Gottgens;Kristina Kirschner;Simon Tomlinson
  • 通讯作者:
    Simon Tomlinson
JAK/ stat signalling during normal and pathological myelopoiesis with focus on erythropoiesis and megakaryopoiesis
  • DOI:
    10.1016/j.exphem.2013.05.275
  • 发表时间:
    2013-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Winnie Lau;Caia Dominicus;Rebecca Hannah;Amy Jones;Anthony Green;Berthold Gottgens
  • 通讯作者:
    Berthold Gottgens
Perturbing haematopoietic transcription factor networks and cell fate decisions using transcriptional activator-like effectors
  • DOI:
    10.1016/j.exphem.2013.05.277
  • 发表时间:
    2013-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Viviane Kawata;Adam Wilkinson;Xuefei Gau;Cheuk-Ho Tsang;Hidetoshi Shimauchi;Pentao Liu;Berthold Gottgens
  • 通讯作者:
    Berthold Gottgens

Berthold Gottgens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Berthold Gottgens', 18)}}的其他基金

Haematopoiesis in a Dish: From Tissue Dynamics to Molecular Mechanisms
培养皿中的造血作用:从组织动力学到分子机制
  • 批准号:
    MR/W031663/1
  • 财政年份:
    2023
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Research Grant
The cellular immune response to B.1.1.7 variant COVID-19 deciphered by single cell multi-omics
单细胞多组学破译对 B.1.1.7 变体 COVID-19 的细胞免疫反应
  • 批准号:
    MR/W014556/1
  • 财政年份:
    2021
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Research Grant
A protein-transcriptome atlas of haematopoiesis across the human life span
人类生命周期造血的蛋白质转录组图谱
  • 批准号:
    MR/S036113/1
  • 财政年份:
    2018
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Research Grant
Joint Wellcome and MRC Centre, ‘Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute’
Wellcome 和 MRC 联合中心、Wellcome Trust 医学研究委员会剑桥干细胞研究所
  • 批准号:
    MC_PC_17230
  • 财政年份:
    2017
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Intramural
Transgenic ES Cell Differentiation Systems to replace Transgenic Mouse Analysis of Tissue Specific Regulatory Elements
转基因 ES 细胞分化系统替代转基因小鼠组织特异性调控元件分析
  • 批准号:
    G0900729/1
  • 财政年份:
    2010
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Research Grant
Genome-wide analysis of combinatorial cis-regulatory control of early blood progenitor cells
早期血液祖细胞顺式调控组合控制的全基因组分析
  • 批准号:
    G0900951/1
  • 财政年份:
    2010
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Research Grant

相似海外基金

Regulation of Haemopoietic and Immune Cells in Health and Disease
健康和疾病中造血细胞和免疫细胞的调节
  • 批准号:
    nhmrc : GNT1113577
  • 财政年份:
    2017
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Programs
Regulation of Haemopoietic and Immune Cells in Health and Disease
健康和疾病中造血细胞和免疫细胞的调节
  • 批准号:
    nhmrc : 1113577
  • 财政年份:
    2017
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Program Grants
Heterogeneity within the ageing human haemopoietic compartment and predisposition to cancer
衰老人类造血室内的异质性和癌症易感性
  • 批准号:
    1951732
  • 财政年份:
    2017
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Studentship
Patient tailored anti-tumour T cells to prevent relapse in patients with acute myeloid leukaemia undergoing allogeneic haemopoietic stem cell transplantation
为患者量身定制抗肿瘤T细胞,以预防接受同种异体造血干细胞移植的急性髓系白血病患者复发
  • 批准号:
    nhmrc : GNT1089398
  • 财政年份:
    2015
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Early Career Fellowships
Patient tailored anti-tumour T cells to prevent relapse in patients with acute myeloid leukaemia undergoing allogeneic haemopoietic stem cell transplantation
为患者量身定制抗肿瘤T细胞,以预防接受同种异体造血干细胞移植的急性髓系白血病患者复发
  • 批准号:
    nhmrc : 1089398
  • 财政年份:
    2015
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Early Career Fellowships
Bone marrow Endothelial Stem Cells have the capacity to form both the endothelial and haemopoietic hierarchies
骨髓内皮干细胞具有形成内皮和造血层次结构的能力
  • 批准号:
    nhmrc : GNT1084990
  • 财政年份:
    2015
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Project Grants
Bone marrow Endothelial Stem Cells have the capacity to form both the endothelial and haemopoietic hierarchies
骨髓内皮干细胞具有形成内皮和造血层次结构的能力
  • 批准号:
    nhmrc : 1084990
  • 财政年份:
    2015
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Project Grants
A clinical trial of partially HLA-matched unrelated donor microtransplantation for prevention of relapse in patients with acute myeloid leukaemia ineligible for standard haemopoietic stem cell transplantation
部分 HLA 匹配的无关供体微移植预防不适合标准造血干细胞移植的急性髓系白血病患者复发的临床试验
  • 批准号:
    nhmrc : 1061252
  • 财政年份:
    2014
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Project Grants
Investigating a novel role for the haemopoietic growth factor receptor, c-Mpl, in regulating shear-dependent platelet adhesive function
研究造血生长因子受体 c-Mpl 在调节剪切依赖性血小板粘附功能中的新作用
  • 批准号:
    nhmrc : 1066956
  • 财政年份:
    2014
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Project Grants
MECHANISMS IN HAEMOPOIETIC DIFFERENTIATION: INSIGHTS FROM NOVEL LOCI IN GENETIC THROMBOCYTOPENIA
造血分化机制:来自遗传性血小板减少症新基因座的见解
  • 批准号:
    MR/K023489/1
  • 财政年份:
    2013
  • 资助金额:
    $ 115.26万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了