Structure and membrane remodelling mechanism of the DP1/Reticulon family of ER proteins.
ER 蛋白 DP1/Reticulon 家族的结构和膜重塑机制。
基本信息
- 批准号:MR/M019152/1
- 负责人:
- 金额:$ 50.37万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The endoplasmic reticulum (ER) is the largest and morphologically most striking of the organelles found inside eukaryotic cells. The ER is composed of a highly dynamic network of lipid membranes contiguous with the nuclear membrane and extending outward to the cell periphery. The ER is a hub for critical cellular functions, being the site of synthesis for membrane proteins, secreted proteins, and lipids; it is also a store for intracellular calcium, and involved in toxin inactivation. The ER close to the cell nucleus is morphologically composed mostly of sheets that provide a large surface area that is coated with protein-producing components of the cell (ribosomes). Further from the nucleus, the ER contains a large number of tubules that are rapidly and continuously remodelled, i.e. they form and disappear on the timescale of seconds. These distinct ER morphologies are conserved across eukaryotes and how these are formed and stabilised is a fundamental question in cell biology with implications for human health and disease, especially that of neurons, which have a greater reliance on highly curved ER than most other types of cells. The DP1 and reticulon families of proteins are responsible for generating and stabilising the highly curved membranes that are found in the tubular ER and the edges of ER sheets, and mutations in the human DP1 proteins called Receptor Expression Enhancing Proteins (REEPs) cause the motor neuron disease Hereditary Spastic Paraplegia (HSP). DP1 and reticulon proteins share a homologous region that is embedded in the membrane called a reticulon homology domain (RHD), however, no molecular insight into the architecture of the RHD exists, and by extension there is no understanding of how mutations in the RHD can lead to diseases like HSP. The current paradigm for RHD function is that this region of the protein contains helical hairpins that do not fully cross the membrane lipid bilayer from the cytosol to the ER, and in this way crowd the cytosolic half of the membrane to induce curvature. However, we have established an experimental system for studying a representative RHD from yeast and have found that it contains four transmembrane helices long enough to fully traversing the membrane. We have also discovered an amphipathic helix (APH) that interacts strongly with membranes, and removal of this region of the yeast RHD abolishes its ability to curve membranes. APHs are commonly found in proteins involved in membrane remodelling, lending support to the possibility that insertion of this APH into the cytosolic leaflet of the membrane bilayer is the central mechanism by which RHDs curve membranes. We will test this hypothesis by determining the complete three-dimensional structure of the RHD and evaluating its interactions with membranes. We will then introduce HSP-causing mutations and determine how they disrupt the RHD structure and function and contribute to HSP development. Using our structural findings for the DP1 RHD and APH, we will test their generality through targeted studies of the human reticulon family, which are involved in neuronal growth and repair.
内质网(ER)是真核细胞内最大的细胞器,也是形态学上最引人注目的细胞器。内质网是由一个高度动态的脂质膜网络与核膜邻接,并向外延伸到细胞周边。ER是关键细胞功能的枢纽,是膜蛋白、分泌蛋白和脂质的合成位点;它也是细胞内钙的储存库,并参与毒素灭活。靠近细胞核的ER在形态上主要由提供大表面积的片层组成,所述片层被细胞的产生蛋白质的组分(核糖体)包覆。在离细胞核更远的地方,ER包含大量快速且连续重塑的小管,即它们在秒的时间尺度上形成和消失。这些不同的ER形态在真核生物中是保守的,它们如何形成和稳定是细胞生物学中的一个基本问题,对人类健康和疾病有影响,特别是神经元,它比大多数其他类型的细胞更依赖于高度弯曲的ER。DP 1和reticulon蛋白质家族负责产生和稳定在管状ER和ER片边缘中发现的高度弯曲的膜,并且称为受体表达增强蛋白(REEP)的人类DP 1蛋白质中的突变导致运动神经元疾病遗传性痉挛性截瘫(HSP)。DP 1和reticulon蛋白共享一个嵌入膜中的同源区域,称为reticulon同源结构域(RHD),然而,对RHD的结构没有分子见解,并且通过扩展,不了解RHD中的突变如何导致HSP等疾病。RHD功能的当前范例是蛋白质的该区域含有螺旋发夹,其不完全穿过膜脂质双层从胞质溶胶到ER,并且以这种方式挤压膜的胞质溶胶一半以诱导曲率。然而,我们已经建立了一个实验系统,研究一个代表性的RHD从酵母,并发现它包含四个跨膜螺旋足够长,以充分穿越膜。我们还发现了一种与膜强烈相互作用的两亲性螺旋(APH),去除酵母RHD的这一区域会消除其弯曲膜的能力。APH通常存在于参与膜重塑的蛋白质中,这支持了APH插入膜双层的胞质小叶是RHD弯曲膜的中心机制的可能性。我们将通过确定RHD的完整三维结构并评估其与膜的相互作用来验证这一假设。然后,我们将介绍HSP引起的突变,并确定它们如何破坏RHD的结构和功能,并有助于HSP的发展。利用我们对DP 1 RHD和APH的结构研究结果,我们将通过对参与神经元生长和修复的人类reticulon家族的靶向研究来测试它们的普遍性。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies.
- DOI:10.1021/acs.chemrev.7b00570
- 发表时间:2018-04-11
- 期刊:
- 影响因子:62.1
- 作者:Chipot C;Dehez F;Schnell JR;Zitzmann N;Pebay-Peyroula E;Catoire LJ;Miroux B;Kunji ERS;Veglia G;Cross TA;Schanda P
- 通讯作者:Schanda P
Allosteric activation of an ion channel triggered by modification of mechanosensitive nano-pockets
- DOI:10.1038/s41467-019-12591-x
- 发表时间:2019-10-10
- 期刊:
- 影响因子:16.6
- 作者:Kapsalis, Charalampos;Wang, Bolin;Pliotas, Christos
- 通讯作者:Pliotas, Christos
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Schnell其他文献
Atomic Detail Studies of P-Glycoprotein and Drug Permeation in Model Membranes
- DOI:
10.1016/j.bpj.2011.11.3590 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Jerome Ma;Phil Biggin;Jason Schnell - 通讯作者:
Jason Schnell
Biochemical and Biophysical Characterisation of Influenza a Virus Proteins
- DOI:
10.1016/j.bpj.2017.11.1240 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Muhd Faiz-Hafiz Mohd Kipli;Jolyon Claridge;Jason Schnell - 通讯作者:
Jason Schnell
Muscle-Specific Kinase Transmembrane Helices: Stability and Interactions in Detergent Micelles vs. Lipid Bilayers
- DOI:
10.1016/j.bpj.2012.11.3375 - 发表时间:
2013-01-29 - 期刊:
- 影响因子:
- 作者:
Amanda Buyan;Khairul A. Halim;Jason Schnell;Mark S.P. Sansom - 通讯作者:
Mark S.P. Sansom
Jason Schnell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Schnell', 18)}}的其他基金
Cytoplasmic tail interactions of the influenza M2 protein with lipid and protein.
流感 M2 蛋白与脂质和蛋白质的细胞质尾部相互作用。
- 批准号:
MR/L018578/1 - 财政年份:2014
- 资助金额:
$ 50.37万 - 项目类别:
Research Grant
Structural Basis of Sigma-1 Receptor Ligand Interactions and Signalling
Sigma-1 受体配体相互作用和信号传导的结构基础
- 批准号:
MR/K018590/1 - 财政年份:2013
- 资助金额:
$ 50.37万 - 项目类别:
Research Grant
Mechanism of Inhibition of Viral and Neuronal Pore Loop Ion Channels by the Adamantanes
金刚烷类药物抑制病毒和神经元孔环离子通道的机制
- 批准号:
G0901012/1 - 财政年份:2010
- 资助金额:
$ 50.37万 - 项目类别:
Research Grant
相似国自然基金
超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
- 批准号:82371103
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
仿生膜构建破骨细胞融合纳米诱饵用于骨质疏松治疗的研究
- 批准号:82372098
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
新跨膜因子Angel Face调控质膜向自噬体膜转化的机理研究
- 批准号:92054109
- 批准年份:2020
- 资助金额:82.0 万元
- 项目类别:重大研究计划
利用新型 pH 荧光探针研究 Syntaxin 12/13 介导的多种细胞器互作
- 批准号:92054103
- 批准年份:2020
- 资助金额:87.0 万元
- 项目类别:重大研究计划
PI(3,5)P2介导溶酶体与黑素小体互作调控黑素小体发生的分子细胞机制
- 批准号:92054102
- 批准年份:2020
- 资助金额:87.0 万元
- 项目类别:重大研究计划
细胞骨架对鞭毛敏感蛋白FLS2胞吞及其免疫调控机制的研究
- 批准号:32000483
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
内质网、线粒体、细胞核互作网络与钙离子调控机制研究
- 批准号:92054105
- 批准年份:2020
- 资助金额:80.0 万元
- 项目类别:重大研究计划
胚体类器官研究Wnt-PCP通路介导基底膜定向分泌与运输的分子机制
- 批准号:32000553
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
关于Tetraspanin富集结构域及迁移体的形成机制的研究
- 批准号:32070691
- 批准年份:2020
- 资助金额:58.0 万元
- 项目类别:面上项目
基于p32-GCS1复合物的线粒体-内质网互作体系鉴定与功能研究
- 批准号:92054106
- 批准年份:2020
- 资助金额:83.0 万元
- 项目类别:重大研究计划
相似海外基金
How does membrane lipid remodelling enable intracellular survival of B. cenocepacia?
膜脂重塑如何使新洋葱伯克霍尔德氏菌在细胞内存活?
- 批准号:
BB/X01651X/1 - 财政年份:2024
- 资助金额:
$ 50.37万 - 项目类别:
Research Grant
Understanding membrane shape remodelling in cilia formation and function
了解纤毛形成和功能中的膜形状重塑
- 批准号:
BB/X013030/1 - 财政年份:2024
- 资助金额:
$ 50.37万 - 项目类别:
Research Grant
Bacterial membrane remodelling and the interaction with peptides
细菌膜重塑及其与肽的相互作用
- 批准号:
DE230100356 - 财政年份:2023
- 资助金额:
$ 50.37万 - 项目类别:
Discovery Early Career Researcher Award
Membrane remodelling during cell division in the thermoacidiophilic archaeaon Sulfolobus acidocaldarius
嗜热嗜酸古菌酸热硫化叶菌细胞分裂过程中的膜重塑
- 批准号:
EP/X027961/1 - 财政年份:2023
- 资助金额:
$ 50.37万 - 项目类别:
Fellowship
The control of cell signalling by membrane remodelling
通过膜重塑控制细胞信号传导
- 批准号:
DP220103444 - 财政年份:2022
- 资助金额:
$ 50.37万 - 项目类别:
Discovery Projects
Multiscale Simulations of Droplet-Membrane Mutual Remodelling
液滴-膜相互重塑的多尺度模拟
- 批准号:
2662722 - 财政年份:2021
- 资助金额:
$ 50.37万 - 项目类别:
Studentship
Multiscale Simulations of Droplet-Membrane Mutual Remodelling
液滴-膜相互重塑的多尺度模拟
- 批准号:
2448995 - 财政年份:2020
- 资助金额:
$ 50.37万 - 项目类别:
Studentship
Determining the role and mechanism of spatially restricted basement membrane remodelling in regulating mesenchymal-epithelial interactions in skin and
确定空间限制的基底膜重塑在调节皮肤和皮肤间质-上皮相互作用中的作用和机制
- 批准号:
2438303 - 财政年份:2020
- 资助金额:
$ 50.37万 - 项目类别:
Studentship
Regulation of membrane remodelling during cell division
细胞分裂过程中膜重塑的调节
- 批准号:
2290110 - 财政年份:2019
- 资助金额:
$ 50.37万 - 项目类别:
Studentship
Regulation of axonal arbor and synaptic dynamics via interactions between the extrinsic apoptotic pathway and membrane trafficking
通过外在凋亡途径和膜运输之间的相互作用调节轴突乔木和突触动力学
- 批准号:
19K21215 - 财政年份:2018
- 资助金额:
$ 50.37万 - 项目类别:
Grant-in-Aid for Research Activity Start-up