Detecting Antibiotic Resistance Proteins in Clinical Samples Using Proteomics

使用蛋白质组学检测临床样本中的抗生素耐药性蛋白

基本信息

  • 批准号:
    MR/N013646/1
  • 负责人:
  • 金额:
    $ 24.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Approximately 40,000 people die in the UK every year as a result of Sepsis, which is a medical condition usually triggered by the body's reaction to bacteria in the blood. When bacteria are present in the blood this is called bacteraemia. The bacteria can come from all sorts of places and can be of many different species. So a diagnosis of Sepsis doesn't tell a doctor what bacterium is responsible. Antibiotics kill bacteria, and so antibiotic therapy is absolutely critical to treating Sepsis. Without removing the underlying cause - the bacteraemia - treatment of Sepsis is unlikely to succeed. The dilemma that doctors face is that because they don't know the identity of the bacterium they want to kill, they are not certain what antibiotics to use. The rise of antibiotic resistance in bacteria makes this choice even more difficult. One way of dealing with this is to use "empiric therapy": to try a particular antibiotic, wait to see if the patient improves and if they don't, try another. But in the meantime, the patient may be getting more and more ill. The alternative approach is that the doctor may start treatment with the latest, most broad acting antibiotic they can find to give them the best chance of killing the bacteria. This means that this "last resort" drug might have been used when it wasn't really needed. Inappropriate use of a last resort drug is the primary driver for antibiotic resistance and will inevitably shorten its useful life. What we really need is to give doctors information about the identity of the bacterium infecting a patient's blood and, more importantly, what antibiotics it is susceptible to. Then they can make informed antibiotic prescribing choices. At the moment, from the time a blood sample is taken from a patient where bacteraemia is suspected it can take 48 hours just to prove there are any bacteria present. Using new MALDI-TOF machines it is possible to identify the bacterium a few hours later, but that doesn't tell you anything about antibiotic susceptibility. It may take another 24 h to find out what antibiotics can be used. This means that patients can be on the wrong antibiotic for up to 72 hours. If that's a non-effective antibiotic, the patient's life is in danger, if it is an inappropriately used last resort antibiotic, the antibiotic's useful life is being shortened. Everyone agrees that reducing the time it takes to get antibiotic susceptibility data to doctors is the key, not just for the treatment of patients, but also to better protect our dwindling supply of useful antibiotics. We feel that it may be possible to achieve this by identifying antibiotic resistance proteins - the tools bacteria employ to resist antibiotics - directly in bacteria isolated from patients' blood. If a particular resistance protein is present, the doctor would know not to use a particular drug. To test our hypothesis we want to test whether we can identify resistance proteins in bacteria in blood samples that have been cultured and processed exactly as they would be in hospital diagnostic labs. We will find out whether it is possible to use existing MALDI-TOF machines to identify at least some antibiotic resistance proteins 24 h earlier than is currently the case. We will also test whether it is possible to use more specialised LC-MS/MS machines to reduce the time to get antibiotic sensitivity data by up to 60 hours, giving a positive indication of antibiotic susceptibility about 12-15 h after sampling. It is not necessary to provide a diagnostic test that works minutes after sampling to have real clinical benefit. For severe Sepsis, each hour without working antibiotics gives a 6% increase in patient mortality, so even shaving tens of hours off the current minimum time it takes to predict antibiotic susceptibility would transform patient care.
在英国,每年约有40,000人死于败血症,这是一种通常由身体对血液中细菌的反应引发的医疗状况。当细菌存在于血液中时,这被称为菌血症。细菌可以来自各种地方,可以是许多不同的物种。因此,脓毒症的诊断并不能告诉医生是什么细菌引起的。抗生素杀死细菌,因此抗生素治疗对治疗脓毒症绝对至关重要。如果不消除根本原因-菌血症-脓毒症的治疗是不可能成功的。医生面临的困境是,由于他们不知道他们想要杀死的细菌的身份,他们不确定使用什么抗生素。细菌中抗生素耐药性的增加使这种选择变得更加困难。处理这种情况的一种方法是使用“经验疗法”:尝试一种特定的抗生素,等着看病人是否好转,如果没有好转,尝试另一种抗生素。但与此同时,病人的病情可能会越来越严重。另一种方法是,医生可能会开始用最新的,最广泛的抗生素治疗,他们可以找到给他们最好的机会杀死细菌。这意味着这种“最后手段”的药物可能在不需要的时候使用。最后手段药物的不当使用是抗生素耐药性的主要驱动力,并将不可避免地缩短其使用寿命。 我们真正需要的是让医生知道感染病人血液的细菌的身份,更重要的是,它对什么抗生素敏感。然后他们可以做出明智的抗生素处方选择。目前,从怀疑有菌血症的病人身上采集血液样本开始,可能需要48小时才能证明有任何细菌存在。使用新的MALDI-TOF机器,可以在几个小时后识别细菌,但这并不能告诉你任何关于抗生素敏感性的信息。可能还需要24小时才能确定可以使用哪些抗生素。这意味着患者可能在错误的抗生素上长达72小时。如果这是一种无效的抗生素,病人的生命处于危险之中,如果它是一种不适当使用的最后手段抗生素,抗生素的使用寿命正在缩短。 每个人都同意,减少向医生获取抗生素敏感性数据的时间是关键,不仅是为了治疗患者,而且是为了更好地保护我们日益减少的有用抗生素供应。我们认为,通过直接从患者血液中分离出的细菌中鉴定抗生素耐药蛋白(细菌用来抵抗抗生素的工具),可能实现这一目标。如果存在特定的耐药蛋白,医生就知道不要使用特定的药物。为了验证我们的假设,我们想测试我们是否可以在已经培养和处理的血液样本中识别细菌中的耐药蛋白,就像在医院诊断实验室中一样。我们将发现是否有可能使用现有的MALDI-TOF机器来识别至少一些抗生素耐药蛋白,比目前的情况早24小时。我们还将测试是否有可能使用更专业的LC-MS/MS机器,将获得抗生素敏感性数据的时间缩短至60小时,在采样后约12-15小时给出抗生素敏感性的阳性指示。没有必要提供在采样后几分钟起作用的诊断测试以具有真实的临床益处。对于严重脓毒症,没有有效抗生素的每小时都会使患者死亡率增加6%,因此即使将目前预测抗生素敏感性所需的最短时间缩短数十小时也会改变患者护理。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resistance to aztreonam in combination with non-ß-lactam ß-lactamase inhibitors due to the layering of mechanisms in Escherichia coli identified following mixed culture selection
由于混合培养选择后确定的大肠杆菌分层机制,对氨曲南与非内酰胺酶抑制剂联合产生耐药性
  • DOI:
    10.1101/615336
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheung C
  • 通讯作者:
    Cheung C
Synonymous lysine codon usage modification in a mobile antibiotic resistance gene similarly alters protein production in bacterial species with divergent lysine codon usage biases because it removes a duplicate AAA lysine codon
移动抗生素抗性基因中的同义赖氨酸密码子使用修饰同样会改变具有不同赖氨酸密码子使用偏差的细菌物种的蛋白质生产,因为它去除了重复的 AAA 赖氨酸密码子
  • DOI:
    10.1101/294173
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alorabi M
  • 通讯作者:
    Alorabi M
Trade-Offs Between Antibacterial Resistance and Fitness Cost in the Production of Metallo-ß-Lactamase by Enteric Bacteria Manifest as Sporadic Emergence of Carbapenem Resistance in a Clinical Setting
肠道细菌生产金属-内酰胺酶的抗菌耐药性和健身成本之间的权衡表现为临床环境中碳青霉烯类耐药性的零星出现
  • DOI:
    10.1101/2020.10.24.353581
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheung C
  • 通讯作者:
    Cheung C
Mutations in Ribosomal Protein RplA or Treatment with Ribosomal Acting Antibiotics Activates Production of Aminoglycoside Efflux Pump SmeYZ in Stenotrophomonas maltophilia.
核糖体蛋白 RplA 突变或核糖体作用抗生素治疗可激活嗜麦芽寡养单胞菌中氨基糖苷外排泵 SmeYZ 的产生。
Early warning score: a dynamic marker of severity and prognosis in patients with Gram-negative bacteraemia and sepsis.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Avison其他文献

Matthew Avison的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Avison', 18)}}的其他基金

Canada_IPAP - Impacts of antibiotic usage reduction in farmed animals
Canada_IPAP - 减少养殖动物抗生素使用的影响
  • 批准号:
    BB/X012670/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24.95万
  • 项目类别:
    Research Grant
One Health Drivers of Antibacterial Resistance in Thailand
泰国抗菌素耐药性的健康驱动因素之一
  • 批准号:
    MR/S004769/1
  • 财政年份:
    2018
  • 资助金额:
    $ 24.95万
  • 项目类别:
    Research Grant
One Health Drivers of Antibacterial Resistance in Thailand
泰国抗菌素耐药性的健康驱动因素之一
  • 批准号:
    MR/R014922/1
  • 财政年份:
    2017
  • 资助金额:
    $ 24.95万
  • 项目类别:
    Research Grant
Acquisition and Selection of Antibiotic Resistance in Companion and Farmed Animals and Implications for Transmission to Humans
伴侣动物和养殖动物抗生素耐药性的获得和选择及其对人类传播的影响
  • 批准号:
    NE/N01961X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 24.95万
  • 项目类别:
    Research Grant

相似国自然基金

水环境中新兴污染物类抗生素效应(Like-Antibiotic Effects,L-AE)作用机制研究
  • 批准号:
    21477024
  • 批准年份:
    2014
  • 资助金额:
    86.0 万元
  • 项目类别:
    面上项目

相似海外基金

Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
  • 批准号:
    EP/Y031067/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.95万
  • 项目类别:
    Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 24.95万
  • 项目类别:
    Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
  • 批准号:
    502587
  • 财政年份:
    2024
  • 资助金额:
    $ 24.95万
  • 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307223
  • 财政年份:
    2024
  • 资助金额:
    $ 24.95万
  • 项目类别:
    Standard Grant
DNA glycosylases involved in interstrand crosslink repair and antibiotic self-resistance
DNA糖基化酶参与链间交联修复和抗生素自身抗性
  • 批准号:
    2341288
  • 财政年份:
    2024
  • 资助金额:
    $ 24.95万
  • 项目类别:
    Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
  • 批准号:
    MR/Y013131/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.95万
  • 项目类别:
    Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
  • 批准号:
    MR/X009580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.95万
  • 项目类别:
    Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
  • 批准号:
    2340818
  • 财政年份:
    2024
  • 资助金额:
    $ 24.95万
  • 项目类别:
    Continuing Grant
Canadian antibiotic prescribing feedback initiative: Building a national framework to combat antimicrobial resistance in primary care (CANBuild-AMR)
加拿大抗生素处方反馈倡议:建立国家框架以应对初级保健中的抗菌药物耐药性 (CANBuild-AMR)
  • 批准号:
    487020
  • 财政年份:
    2023
  • 资助金额:
    $ 24.95万
  • 项目类别:
    Operating Grants
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
  • 批准号:
    480022
  • 财政年份:
    2023
  • 资助金额:
    $ 24.95万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了