Predicting evolutionary dynamics of multi-drug resistance
预测多重耐药性的进化动态
基本信息
- 批准号:MR/R024936/1
- 负责人:
- 金额:$ 40.94万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is an urgent need to develop novel approaches to halt the evolution and spread of antimicrobial resistance. Combination therapies (multiple drugs given as a single prescription) are promising, both for preventing resistance and for optimising treatments for specific infections. However, recent experimental work has shown that combination therapies can select for multi-drug resistance in conditions experienced by natural microbial populations (e.g. temporally-varying drug concentrations and elevated mutation rates).To establish whether combination therapies are a viable strategy, we need predictive models for how well drug combinations prevent resistance under real-world conditions where antibiotics are present (including infection and agriculture). A combined modelling and experimental approach is required because testing more than a handful of drugs is a considerable logistical challenge-5 antibiotics screened at 10 doses requires nearly 10 million growth assays, beyond the limits of high-throughput technologies. However, models need to account for the basic biology of microbial growth under temporally-varying antibiotic levels, which requires experimental measurement. Model predictions will be validated by experimentally exposing bacterial populations to the best and worst identified combinations to see if multi-drug resistance evolves. This work is crucial for establishing combination therapies as a viable solution to the antibiotic resistance crisis.
迫切需要开发新的方法来阻止抗生素耐药性的演变和传播。联合疗法(多种药物作为单一处方)是有希望的,既可以预防耐药性,也可以优化特定感染的治疗。然而,最近的实验工作表明,联合治疗可以选择在自然微生物种群经历的条件下的多药耐药性为了确定联合治疗是否是一种可行的策略,我们需要预测模型,以了解在存在抗生素的现实世界条件下,药物组合如何防止耐药性(包括感染和农业)。需要结合建模和实验方法,因为测试超过少数药物是一个相当大的后勤挑战-在10个剂量筛选5种抗生素需要近1000万次生长测定,超出了高通量技术的限制。然而,模型需要考虑在时间变化的抗生素水平下微生物生长的基本生物学,这需要实验测量。模型预测将通过实验将细菌种群暴露于最佳和最差的已识别组合来验证,以观察是否会出现多药耐药性。这项工作对于建立联合疗法作为抗生素耐药性危机的可行解决方案至关重要。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Environmental pleiotropy and demographic history direct adaptation under antibiotic selection.
- DOI:10.1038/s41437-018-0137-3
- 发表时间:2018-11
- 期刊:
- 影响因子:3.8
- 作者:Gifford DR;Krašovec R;Aston E;Belavkin RV;Channon A;Knight CG
- 通讯作者:Knight CG
Identifying and exploiting genes that potentiate the evolution of antibiotic resistance.
- DOI:10.1038/s41559-018-0547-x
- 发表时间:2018-06
- 期刊:
- 影响因子:16.8
- 作者:Gifford DR;Furió V;Papkou A;Vogwill T;Oliver A;MacLean RC
- 通讯作者:MacLean RC
Life on the frontline reveals constraints.
前线的生活暴露出诸多限制。
- DOI:10.1038/s41559-019-1010-3
- 发表时间:2019
- 期刊:
- 影响因子:16.8
- 作者:Gifford DR
- 通讯作者:Gifford DR
Spontaneous mutation rate is a plastic trait associated with population density across domains of life.
自发突变率是一种塑性性状,与生命领域的种群密度相关。
- DOI:10.1371/journal.pbio.2002731
- 发表时间:2017-08
- 期刊:
- 影响因子:9.8
- 作者:Krašovec R;Richards H;Gifford DR;Hatcher C;Faulkner KJ;Belavkin RV;Channon A;Aston E;McBain AJ;Knight CG
- 通讯作者:Knight CG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danna Gifford其他文献
Danna Gifford的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danna Gifford', 18)}}的其他基金
Determining the architecture of antibiotic resistance evolvability
确定抗生素耐药性进化的结构
- 批准号:
BB/X007979/1 - 财政年份:2023
- 资助金额:
$ 40.94万 - 项目类别:
Research Grant
Life on the 'mild' side: adaptation of an extremophile archaeon to a mesophilic lifestyle
“温和”的生活:极端微生物古菌适应中温生活方式
- 批准号:
NE/X012662/1 - 财政年份:2023
- 资助金额:
$ 40.94万 - 项目类别:
Research Grant
Costs of fluoroquinolone resistance in clinical E. coli: a potential explanation for similarities in resistance between the UK and Canada
临床大肠杆菌中氟喹诺酮类药物耐药性的成本:英国和加拿大耐药性相似性的潜在解释
- 批准号:
NE/T014709/1 - 财政年份:2020
- 资助金额:
$ 40.94万 - 项目类别:
Research Grant
相似国自然基金
经济复杂系统的非稳态时间序列分析及非线性演化动力学理论
- 批准号:70471078
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Eco-evolutionary dynamics of seasonally mobile systems
季节性移动系统的生态进化动力学
- 批准号:
NE/Y000684/1 - 财政年份:2024
- 资助金额:
$ 40.94万 - 项目类别:
Research Grant
Decoding the evolutionary dynamics of bacterial regulatory sRNAs
解码细菌调节 sRNA 的进化动力学
- 批准号:
2315798 - 财政年份:2023
- 资助金额:
$ 40.94万 - 项目类别:
Standard Grant
BoCP-Implementation: Eco-evolutionary dynamics of rewilding: Real-time genetic monitoring of large-mammal community reassembly
BoCP-实施:野化的生态进化动力学:大型哺乳动物群落重组的实时基因监测
- 批准号:
2225088 - 财政年份:2023
- 资助金额:
$ 40.94万 - 项目类别:
Continuing Grant
The impact of immune escape on the epidemiology and evolutionary dynamics of the COVID-19 pandemic in Yucatan, Mexico
免疫逃逸对墨西哥尤卡坦半岛 COVID-19 大流行的流行病学和进化动态的影响
- 批准号:
10741899 - 财政年份:2023
- 资助金额:
$ 40.94万 - 项目类别:
LTREB: Sexual selection over time: evolutionary dynamics and outcomes of intense male competition and female mate choice in a lek mating system
LTREB:随着时间的推移,性选择:lek交配系统中激烈的雄性竞争和雌性择偶的进化动态和结果
- 批准号:
2243423 - 财政年份:2023
- 资助金额:
$ 40.94万 - 项目类别:
Continuing Grant
The evolutionary dynamics of learned bird song
习得鸟鸣的进化动力学
- 批准号:
2327982 - 财政年份:2023
- 资助金额:
$ 40.94万 - 项目类别:
Standard Grant
RAPID: Eco-evolutionary dynamics of host-parasite interactions in a novel environment
RAPID:新环境中宿主-寄生虫相互作用的生态进化动力学
- 批准号:
2323185 - 财政年份:2023
- 资助金额:
$ 40.94万 - 项目类别:
Standard Grant
Eco-evolutionary dynamics of parallel climate-driven range shifts in the wild
野外气候驱动范围变化的平行生态进化动力学
- 批准号:
EP/X023362/1 - 财政年份:2023
- 资助金额:
$ 40.94万 - 项目类别:
Fellowship
Analysis of evolutionary dynamics of ecosystem using automated culture system
利用自动化培养系统分析生态系统的进化动态
- 批准号:
23H02471 - 财政年份:2023
- 资助金额:
$ 40.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)