Data synthesis over a network of multiple treatment comparisons for joint longitudinal and event-time outcomes.
通过多个治疗比较网络进行数据合成,以获取联合纵向和事件时间结果。
基本信息
- 批准号:MR/S019251/1
- 负责人:
- 金额:$ 30.2万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
When examining data concerning a particular disease, it is beneficial to examine relevant data from multiple data sources, for example the results of multiple studies, datasets from several different hospitals or centres etc. The populations may differ between these different data sources, resulting in variability in response between data from different studies, hospitals or centres. This needs to be accounted for in the analysis. Meta-analysis is an approach to analyse data from multiple different sources, whilst accounting for differences between the data sources.Commonly a range of different information is collected from individuals concerning their health. These could include items repeatedly measured over time, such as the results from weekly blood tests. They could also include the time until a specific event of interest occurs, such as the time until a disease progresses to the next stage. Joint modelling has been growing in popularity as a method to simultaneously model outcomes repeatedly measured over time, along with time until event outcomes. Recently, work has been conducted to expand joint modelling to the case of multiple data sources. For a given condition or disease, commonly there are more than two possible treatment options. In reality, it is likely that different sets of possible treatment options are examined across the different data sources. For example one study may have examined treatment options A, B and C, whilst another examined B, C, and D, and a third examined only A and C. Current multi-data source joint modelling methods require treatment options to be directly compared in all data sources, meaning that the data sources contributing to the analysis would have to compare the same set of treatment options. However, network meta-analysis methods allow analysis of data where the set of investigated treatment options is not identical between data sources, as it allows both direct information (e.g. A compared to C) and indirect information (A compared to B, B compared to C) to inform about the treatment comparison A versus C. As such, provided paths exist between the possible treatment options, network meta-analyses do not require the data sources to examine the same sets of treatment options.Network meta-analyses have not been extended into joint modelling methodology. This fellowship will develop this methodology, and implement it in free, easy to use statistical software. However, a known problem in joint modelling analyses is that joint models can be time intensive to fit, an issue that would be increasingly noticeable with large multi-data source analyses. During this fellowship, computer science and machine learning methods such as Sequential Monte Carlo or SMC samplers will be employed in an attempt to significantly reduce model fitting times for joint models. The developed methodology and software will be applied to three analyses; to compare treatment options for patients with HIV in an analysis of multi-hospital data containing time until relapse and markers such as CD4 cell count, to compare treatment options for hypertensive patients in a multi-study dataset containing systolic blood pressure and time to death measurements, and to compare treatment options for cardiovascular drug support for patients in different intensive care units in an analysis of time to treatment withdrawal along with various biomarkers.
在检查与特定疾病有关的数据时,有益的是检查来自多个数据源的相关数据,例如多项研究的结果、来自几个不同医院或中心的数据集等。这些不同的数据源之间的人群可能不同,导致来自不同研究、医院或中心的数据之间的反应不同。这一点需要在分析中加以考虑。Meta分析是一种分析来自多个不同来源的数据的方法,同时考虑到不同数据源之间的差异。通常只从个人收集关于他们健康的不同信息。这些可能包括随着时间的推移重复测量的项目,例如每周血液测试的结果。它们还可以包括特定感兴趣的事件发生之前的时间,例如疾病发展到下一阶段的时间。联合建模作为一种同时模拟随时间重复测量的结果以及直到事件结果的时间的方法越来越受欢迎。最近,已经开展工作,将联合建模扩展到多个数据源的情况。对于一种特定的情况或疾病,通常有两种以上的可能治疗方案。实际上,很可能会跨不同的数据源检查不同的可能治疗选项集。例如,一项研究可能检查了处理选项A、B和C,而另一项研究检查了B、C和D,而第三项研究仅检查了A和C。当前的多数据源联合建模方法要求在所有数据源中直接比较处理选项,这意味着对分析作出贡献的数据源将必须比较同一组处理选项。然而,网络荟萃分析方法允许在所调查的治疗选项集合在数据源之间不相同的情况下分析数据,因为它允许直接信息(例如,A与C相比)和间接信息(A与B相比,B与C相比)两者来告知治疗比较A与C。因此,如果在可能的治疗选项之间存在路径,则网络荟萃分析不要求数据源检查相同的治疗选项集合。该研究金将开发这一方法,并在免费、易于使用的统计软件中实施。然而,联合建模分析中的一个已知问题是,联合模型的拟合可能需要很长时间,这一问题在大型多数据源分析中会越来越明显。在此期间,将使用计算机科学和机器学习方法,如顺序蒙特卡洛采样器或SMC采样器,试图显著减少联合模型的模型拟合时间。开发的方法和软件将应用于三项分析;在多家医院的数据分析中比较艾滋病毒患者的治疗方案,这些数据包括直到复发的时间和CD4细胞计数等指标,在包含收缩压和死亡时间测量的多研究数据集中比较高血压患者的治疗方案,以及在分析停药时间和各种生物标志物的情况下比较不同重症监护病房患者的心血管药物支持的治疗方案。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Protocol for individual participant data meta-analysis of randomised controlled trials of patients with psychosis to investigate treatment effect modifiers for CBT versus treatment as usual or other psychosocial interventions.
- DOI:10.1136/bmjopen-2019-035062
- 发表时间:2021-05-28
- 期刊:
- 影响因子:2.9
- 作者:Sudell M;Tudur-Smith C;Liao X;Longden E;Dunn G;Kendall T;Emsley R;Morrison A;Varese F
- 通讯作者:Varese F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Sudell其他文献
Correction to: joint models for longitudinal and time-to-event data: a review of reporting quality with a view to meta-analysis
- DOI:
10.1186/s12874-018-0489-7 - 发表时间:
2018-04-04 - 期刊:
- 影响因子:3.400
- 作者:
Maria Sudell;Ruwanthi Kolamunnage-Dona;Catrin Tudur-Smith - 通讯作者:
Catrin Tudur-Smith
Methodology and Software for Joint Modelling of Time-to-Event Data and Longitudinal Outcomes Across Multiple Studies
- DOI:
- 发表时间:
2018-05 - 期刊:
- 影响因子:0
- 作者:
Maria Sudell - 通讯作者:
Maria Sudell
Topiramate versus carbamazepine monotherapy for epilepsy: an individual participant data review.
托吡酯与卡马西平单一疗法治疗癫痫:个体参与者数据审查。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:8.4
- 作者:
S. Nevitt;Maria Sudell;C. Tudur Smith;A. Marson - 通讯作者:
A. Marson
Bayesian joint modelling of longitudinal and time to event data: a methodological review
- DOI:
10.1186/s12874-020-00976-2 - 发表时间:
2020-04-26 - 期刊:
- 影响因子:3.400
- 作者:
Maha Alsefri;Maria Sudell;Marta García-Fiñana;Ruwanthi Kolamunnage-Dona - 通讯作者:
Ruwanthi Kolamunnage-Dona
Investigation of one-stage meta-analysis methods for joint longitudinal and time-to-1 event data through simulation and real data application 2
通过模拟和实际数据应用研究联合纵向和时间对一事件数据的一阶段荟萃分析方法2
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Maria Sudell;R. Kolamunnage;F. Gueyffier;Catrin;Tudur Smith - 通讯作者:
Tudur Smith
Maria Sudell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
胆固醇合成蛋白CYP51介导线粒体通透性转换诱发Th17/Treg细胞稳态失衡在舍格伦综合征中的作用机制研究
- 批准号:82370976
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
“肠—肝轴”PPARα/CYP8B1胆汁酸合成信号通路在减重手术改善糖脂代谢中的作用与机制
- 批准号:82370902
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
lncGEI诱导湖羊卵巢颗粒细胞E2合成的分子机制
- 批准号:32372856
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
脂肪酸合成通过GDF15/IRS2介导胰岛素抵抗促进血管内皮细胞活化导致脓毒症肺损伤的机制研究
- 批准号:82372203
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
环状RNA circ-PRKAA1调控肝癌细胞脂代谢重编程的研究
- 批准号:32000527
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ALDH6A1缺损重塑糖脂代谢促进肝细胞癌发生的机制研究
- 批准号:91957109
- 批准年份:2019
- 资助金额:79.0 万元
- 项目类别:重大研究计划
新型滤波器综合技术-直接综合技术(Direct synthesis Technique)的研究及应用
- 批准号:61671111
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
双硅化合物反应及天然产物合成应用研究
- 批准号:21172150
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
新型M4受体选择性拮抗剂的研究
- 批准号:30973615
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
基于penicillide结构的类天然产物合成及其胆固醇酯转运蛋白抑制的研究
- 批准号:20872019
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
- 批准号:
10572855 - 财政年份:2023
- 资助金额:
$ 30.2万 - 项目类别:
Impact of Dietary Phosphate Excess on Exercise Capacity and Visceral Adiposity
膳食磷酸盐过量对运动能力和内脏肥胖的影响
- 批准号:
10597140 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
Impact of Dietary Phosphate Excess on Exercise Capacity and Visceral Adiposity
膳食磷酸盐过量对运动能力和内脏肥胖的影响
- 批准号:
10464465 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
Surface ocean pH over the last ~300 years: A synthesis and re-evaluation of coral-based reconstructions
过去约 300 年的表层海洋 pH 值:基于珊瑚的重建的综合和重新评估
- 批准号:
2102986 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Selective synthesis of high value-added products with chiral carbon atoms containing from sugars over heterogeneous catalysts
非均相催化剂上糖类选择性合成含手性碳原子的高附加值产品
- 批准号:
21K14458 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mechanocatalytic Ammonia Synthesis over Transition Metal Nitrides
过渡金属氮化物机械催化合成氨
- 批准号:
2120066 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
A Bayesian evidence synthesis approach to an adaptable model for estimating the number of overdose events in a population over a given calendar period of time
贝叶斯证据综合方法的适应性模型,用于估计给定日历时间段内人群中用药过量事件的数量
- 批准号:
449162 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别:
Fellowship Programs
The development of kinetic models for phosgene synthesis over heterogeneous catalysts
非均相催化剂光气合成动力学模型的发展
- 批准号:
2442430 - 财政年份:2020
- 资助金额:
$ 30.2万 - 项目类别:
Studentship
Ammonia synthesis over precious metal-free inorganic-organic hybrid catalysts
无贵金属无机-有机杂化催化剂合成氨
- 批准号:
19K05146 - 财政年份:2019
- 资助金额:
$ 30.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




