Application of machine learning to discover new multimorbidity phenotypes associated with poorer outcomes

应用机器学习发现与较差结果相关的新的多发病表型

基本信息

  • 批准号:
    MR/S027750/1
  • 负责人:
  • 金额:
    $ 71.75万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Multi-morbidity is a poorly defined concept in which people suffer from more than one ongoing condition at the same time. The true extend of multi-morbidity is difficult to assess as there is no agreed definition for reporting. However, analysis of prescribing for chronic conditions and simple counts of different illnesses show that multimorbidity is becoming more common and is associated with poorer outcomes, such as how long people stay in hospital or premature mortality. It would be helpful to identify factors that predate the development of different morbidities to help understand how morbidities develop, which ones are commonly associated with others, to better understand the effectiveness of health services and individual treatments and to identify opportunities to prevent or delay the onset of these conditions.Because we know so little about the development of these conditions we propose to use new analytical approaches from computer science, known as machine learning, to identify previously hidden or unknown relationships between different conditions. We will use detailed information from the medical records of the 3 million people of Wales held in the Secure Anonymised Information Linkage (SAIL) system. SAIL is a privacy protecting system in which records that have been stripped of all personal identifiers can be used to understand the development of diseases. We will use the availability of new data on the results of laboratory investigations, such as changes in blood chemistry, to see if these predict the onset of conditions. If we do find useful patterns we will provide this knowledge back to NHS organisations to allow them to improve their services and intervene earlier to protect people's health. By bringing together routinely collected and epidemiologic data at scale, this proposal exploits the potential of the fast-developing UK health informatics environment. Our team includes a mixture of health service researchers, computer scientists, clinical doctors and members of the public who have helped develop this proposal and will continue to be involved in the research and its dissemination.
多发病是一个定义不清的概念,即人们同时患有一种以上的持续疾病。由于没有商定的报告定义,因此难以评估多重发病率的真实范围。然而,对慢性病处方和不同疾病的简单计数的分析表明,多发性硬化症正变得越来越普遍,并且与较差的结果有关,例如人们住院或过早死亡的时间。确定不同发病率发展之前的因素将有助于了解发病率是如何发展的,哪些发病率通常与其他发病率相关,为了更好地了解卫生服务和个体治疗的有效性,并确定预防或延迟这些疾病发作的机会。由于我们对这些疾病的发展知之甚少,我们建议使用新的分析方法,计算机科学,被称为机器学习,以识别不同条件之间先前隐藏或未知的关系。我们将使用安全匿名信息链接(SAIL)系统中保存的300万威尔士人医疗记录的详细信息。SAIL是一个隐私保护系统,其中已被剥夺所有个人标识符的记录可用于了解疾病的发展。我们将利用实验室调查结果的新数据,如血液化学的变化,看看这些数据是否能预测疾病的发生。如果我们确实发现了有用的模式,我们将把这些知识提供给NHS组织,让他们改善服务,并更早地干预,以保护人们的健康。通过将常规收集的流行病学数据大规模汇集在一起,该提案利用了快速发展的英国卫生信息环境的潜力。我们的团队包括卫生服务研究人员、计算机科学家、临床医生和公众,他们帮助制定了这一提案,并将继续参与研究和传播。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Protocol for the development of the Wales Multimorbidity e-Cohort (WMC): data sources and methods to construct a population-based research platform to investigate multimorbidity.
  • DOI:
    10.1136/bmjopen-2020-047101
  • 发表时间:
    2021-01-19
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Lyons J;Akbari A;Agrawal U;Harper G;Azcoaga-Lorenzo A;Bailey R;Rafferty J;Watkins A;Fry R;McCowan C;Dezateux C;Robson JP;Peek N;Holmes C;Denaxas S;Owen R;Abrams KR;John A;O'Reilly D;Richardson S;Hall M;Gale CP;Davies J;Davies C;Cross L;Gallacher J;Chess J;Brookes AJ;Lyons RA
  • 通讯作者:
    Lyons RA
Journal of Biomedical Informatics 2021
生物医学信息学杂志2021
Developing and Publishing Code for Trusted Research Environments: Best Practices and Ways of Working
为可信研究环境开发和发布代码:最佳实践和工作方式
  • DOI:
    10.48550/arxiv.2111.06301
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chalstrey E
  • 通讯作者:
    Chalstrey E
Novel multimorbidity clusters in people with eczema and asthma: a population-based cluster analysis.
  • DOI:
    10.1038/s41598-022-26357-x
  • 发表时间:
    2022-12-18
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Quantifying multi-morbidity in an ethnically-diverse inner city population: the health burden of households
量化内城区种族多元化人口的多种发病率:家庭的健康负担
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ronan Lyons其他文献

Support and Assessment for Fall Emergency Referrals (SAFER 1) trial protocol. Computerised on-scene decision support for emergency ambulance staff to assess and plan care for older people who have fallen: evaluation of costs and benefits using a pragmatic cluster randomised trial
  • DOI:
    10.1186/1471-227x-10-2
  • 发表时间:
    2010-01-26
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Helen Snooks;Wai-Yee Cheung;Jacqueline Close;Jeremy Dale;Sarah Gaze;Ioan Humphreys;Ronan Lyons;Suzanne Mason;Yasmin Merali;Julie Peconi;Ceri Phillips;Judith Phillips;Stephen Roberts;Ian Russell;Antonio Sánchez;Mushtaq Wani;Bridget Wells;Richard Whitfield
  • 通讯作者:
    Richard Whitfield

Ronan Lyons的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ronan Lyons', 18)}}的其他基金

Controlling COVID19 through enhanced population surveillance and intervention (Con-COV): a platform approach
通过加强人口监测和干预 (Con-COV) 控制新冠肺炎:平台方法
  • 批准号:
    MR/V028367/1
  • 财政年份:
    2020
  • 资助金额:
    $ 71.75万
  • 项目类别:
    Research Grant
UKDP: Integrated DEmentiA research environment (IDEA)
UKDP:综合痴呆症研究环境 (IDEA)
  • 批准号:
    MR/M024881/1
  • 财政年份:
    2015
  • 资助金额:
    $ 71.75万
  • 项目类别:
    Research Grant
MICA: Centre for the Improvement of Population Health through E-health Research (CIPHER)
MICA:通过电子健康研究改善人口健康中心 (CIPHER)
  • 批准号:
    MR/K006525/1
  • 财政年份:
    2013
  • 资助金额:
    $ 71.75万
  • 项目类别:
    Research Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
非标准随机调度模型的最优动态策略
  • 批准号:
    71071056
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2420029
  • 财政年份:
    2024
  • 资助金额:
    $ 71.75万
  • 项目类别:
    Standard Grant
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
  • 批准号:
    24K17615
  • 财政年份:
    2024
  • 资助金额:
    $ 71.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
  • 批准号:
    23K24856
  • 财政年份:
    2024
  • 资助金额:
    $ 71.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
  • 批准号:
    10696649
  • 财政年份:
    2023
  • 资助金额:
    $ 71.75万
  • 项目类别:
Prediction of Phase Transition Behavior by Machine Learning to Interpret Molecular Arrangement and Application to Photofunctional Liquid Crystals
通过机器学习预测相变行为以解释分子排列及其在光功能液晶中的应用
  • 批准号:
    22KJ1964
  • 财政年份:
    2023
  • 资助金额:
    $ 71.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CDS&E: Robust Symmetry-Preserving Machine Learning: Theory and Application
CDS
  • 批准号:
    2244976
  • 财政年份:
    2023
  • 资助金额:
    $ 71.75万
  • 项目类别:
    Continuing Grant
Application of machine learning to condensed matter physics
机器学习在凝聚态物理中的应用
  • 批准号:
    2904795
  • 财政年份:
    2023
  • 资助金额:
    $ 71.75万
  • 项目类别:
    Studentship
Sustainable Maritime Transportation Network considering Sulphur Fuel Regulation - Application of Advanced Machine Learning and Optimization
考虑硫燃料监管的可持续海上运输网络 - 先进机器学习和优化的应用
  • 批准号:
    2885828
  • 财政年份:
    2023
  • 资助金额:
    $ 71.75万
  • 项目类别:
    Studentship
Application to machine learning using discomfort detected by EEG as a feedback index
以脑电图检测到的不适作为反馈指标在机器学习中的应用
  • 批准号:
    23K11209
  • 财政年份:
    2023
  • 资助金额:
    $ 71.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extraction of Vital Signs using a Telehealth Application for Asthma - EViTA-AThe purpose of this grant is to evaluate mobile devices to extract vitals signs to monitor patients with Asthma
使用哮喘远程医疗应用程序提取生命体征 - EViTA-A 这项拨款的目的是评估移动设备提取生命体征以监测哮喘患者
  • 批准号:
    10699530
  • 财政年份:
    2023
  • 资助金额:
    $ 71.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了