Physical Principles of Biomolecular Recognition, Self-Assembly and Regulation
生物分子识别、自组装和调控的物理原理
基本信息
- 批准号:6107989
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
teractions between various biological helices
control protein folding and assembly, DNA packing, protein-DNA
interactions, connective tissue formation and stability, and many
other processes responsible for normal function and pathology in
living organisms. By combining direct measurements with rigorous
physical theories we continued to advance our understanding of
these most basic molecular recognition reactions. Our most
significant achievements during the past year were: (1)
Development of a theory of electrostatic interactions driving poly-
and mesomorphous transitions in dense aggregates of long,
natural DNA. Based on this theory, we proposed mechanisms for
the B to A transition in DNA fibers upon decreasing
humidity, for the stabilization of the B form by Li+ ions, and for the
transitions from hexagonal to monoclinic or orthorhombic
packing of DNA in the aggregates. These phenomena were
observed already in early, pioneering studies by Franklin et al. and
by Wilkins et al., but they were never fully understood. (2)
Measurement of the effects of protein denaturants on interactions
between collagen helices in fibers. Our results suggested a novel
mechanism of temperature-induced collagen fibrillogenesis.
Apparently, elevated temperature causes local melting and
structural rearrangements of collagen triple helices in a vicinity of
recognition sites. This promotes correct inter-molecular recognition
and fiber assembly. Urea, acetamide, and some of their
methylated derivatives facilitate the process by easing the local
melting. As a result, they enhance the temperature dependence
of forces between collagen helices. However, these protein
denaturants also bind non-specifically to collagen backbone
intensifying hydration repulsion between triple helices. The latter
effect, which is likely to be common for most proteins,
overpowers the recognition enhancement leading to overall
suppression of fibrillogenesis."
各种生物螺旋之间的相互作用
控制蛋白质折叠和组装、DNA 包装、蛋白质-DNA
相互作用、结缔组织的形成和稳定性等
负责正常功能和病理的其他过程
活的有机体。通过将直接测量与严格的
我们继续加深对物理理论的理解
这些最基本的分子识别反应。我们最
过去一年取得的重大成就有:(1)
发展静电相互作用驱动多聚的理论
以及长的致密聚集体中的介晶转变,
天然DNA。基于这个理论,我们提出了机制
DNA 纤维中 B 到 A 的转变
湿度,用于通过 Li+ 离子稳定 B 形式,并用于
从六方晶系转变为单斜晶系或斜方晶系
DNA 在聚集体中的堆积。这些现象是
富兰克林等人在早期的开创性研究中已经观察到了这一点。和
威尔金斯等人提出了这一观点,但他们从未被完全理解。 (2)
测量蛋白质变性剂对相互作用的影响
纤维中的胶原蛋白螺旋之间。我们的结果暗示了一部小说
温度诱导胶原纤维生成的机制。
显然,升高的温度会导致局部熔化和
胶原蛋白三螺旋附近的结构重排
识别位点。这促进了正确的分子间识别
和纤维组装。尿素、乙酰胺及其一些
甲基化衍生物通过缓解局部反应来促进该过程
融化。因此,它们增强了温度依赖性
胶原蛋白螺旋之间的力。然而,这些蛋白质
变性剂也非特异性地结合到胶原蛋白骨架上
增强三螺旋之间的水合作用排斥力。后者
效应,这对于大多数蛋白质来说可能是常见的,
压倒识别增强导致整体
抑制原纤维形成。”
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergey Leikin其他文献
Sergey Leikin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergey Leikin', 18)}}的其他基金
Collagen folding and Interactions: from basic principles to bone disorders
胶原蛋白折叠和相互作用:从基本原理到骨骼疾病
- 批准号:
7734679 - 财政年份:
- 资助金额:
-- - 项目类别:
High-definition infrared micro-spectroscopic imaging of biomaterials
生物材料的高清红外显微光谱成像
- 批准号:
10269681 - 财政年份:
- 资助金额:
-- - 项目类别:
Physical Principles Of Biomolecular Recognition, Self-as
生物分子识别的物理原理,自我
- 批准号:
6991159 - 财政年份:
- 资助金额:
-- - 项目类别:
相似海外基金
FORTIFY - From Molecular Physiology to Biophysics of the Glymphatic System: a Regulatory Role for Aquaporin-4
FORTIFY - 从类淋巴系统的分子生理学到生物物理学:Aquaporin-4 的调节作用
- 批准号:
EP/Y023684/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
The Biophysics of Mesoscale, Reversible, Biomolecular Assemblies
中尺度可逆生物分子组装的生物物理学
- 批准号:
EP/Y000501/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Biophysics of the brain’s waste disposal system: Understanding why we sleep
大脑废物处理系统的生物物理学:了解我们为什么睡觉
- 批准号:
DP230101113 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
CAREER: Surfactant Proteins that Stabilize Biomolecular Condensates: From Biophysics to Biomaterials for Biomanufacturing
职业:稳定生物分子缩合物的表面活性剂蛋白:从生物物理学到生物制造的生物材料
- 批准号:
2238914 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
REU Site: A Summer Research Experience in Structural and Computational Biology and Biophysics
REU 网站:结构与计算生物学和生物物理学的夏季研究经历
- 批准号:
2150396 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Center: REU Site: Interdisciplinary Research Opportunities in Biophysics
中心:REU 地点:生物物理学的跨学科研究机会
- 批准号:
2242779 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Targeted Infusion Project: Creation of a Biophysics minor program for STEM success
有针对性的输液项目:为 STEM 成功创建生物物理学辅修课程
- 批准号:
2306506 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant