Planetary Original Diagnostics at Extreme Conditions with Raman Spectroscopy
利用拉曼光谱在极端条件下进行行星原始诊断
基本信息
- 批准号:MR/T043733/1
- 负责人:
- 金额:$ 154.72万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The scarce information we have about Giant planets comes from telescopes, which see electromagnetic radiation; space missions, which observe only the planetary surface; and computational simulations. Through the development of this fellowship, we will create and study planetary materials under extreme conditions in our laboratory. For the first time, we will know what our solar system is made of. A diamond anvil cell (DAC) is a versatile and simple device, in which pressures of 1 million times above the atmospheric pressure and beyond can be generated by pressing a tiny sample between two diamonds, (10^8 ml). DACs will be coupled to resistive and laser heating, which allows us to reach conditions close to the Giant planets outer layers. Chemistry is different at these pressures and does not follow traditionally expected routes. Pressure causes extraordinary changes in the properties of matter by bringing the atoms closer and closer to each other. It can turn the air we breath into a beautiful dark red crystal (oxygen), make a semiconducting polymer out of nitrogen or transform peanut butter into diamond. When we misunderstand the nature of planetary materials, then all our models of planetary dynamics will go awry.The main elements of interest in this project will be hydrogen and helium which constitute over 87 % of Giant gas planets' mass, and water, ammonia and methane, the main mantle constituents of the "icy planets" (Neptune and Uranus). These planets have strong magnetic fields, created by dynamo mechanism. In the case of Jupiter metallic liquid hydrogen drives the dipole moment, while in the case of Uranus its dynamo is thought to be due to super-ionic water. Conductivity in these molecular fluids is induced by the extreme pressure and temperature in the planetary mantle, which ranges from 20 GPa and 2000 K to 600 GPa and 7000 K. The aim of this project is to understand the role of hydrogen within the planetary interiors: this is expected to be in a metallic fluid state. However, it is not known whether it will be interacting with helium or if it will be able to penetrate the water, ammonia and methane layers of Neptune and Uranus forming new chemical structures or accumulating as fluid impenetrable drops.Raman spectroscopy is an effective technique which gives access to the physico-chemical properties of matter. Coupled with diamond anvil cell technique it opens up a perfect window into the unusual world of extreme conditions at which planetary materials exist. A novel part of the project will be the fast high-temperature isothermal compression achieved within a novel devise called dynamic diamond anvil cell, to avoid problems of sample time-based reactions, characteristic of hydrogen, helium and water related materials. This project will implement the most modern advances of Raman spectroscopy at the same time utilising my skills and experience. This is a multidisciplinary project binding material, physical, planetary and chemical sciences. The FLF will enable me to make the first measurements of phase transformations in material behaviour at conditions relevant to Jovian planets. The astrophysics community will benefit from solid experimental proofs of the behaviour of fundamental elements in planetary conditions. The condensed matter field, on the other hand, will be extended with knowledge of the novel materials created at extreme and brought back to ambient conditions. Therefore, this project entails a unique link between different scientific branches, namely astrophysics and material sciences. These experiments would put the UK in the forefront of extreme conditions and astrophysics sciences. The expanding number of research groups interested in high-pressure science will benefit directly from the in-house, high-pressure facilities planned (and existing), their future development and their adaptability to their problems.
我们对巨行星的稀少信息来自望远镜,望远镜可以看到电磁辐射;只观测行星表面的太空任务;计算模拟。通过这个奖学金的发展,我们将在我们的实验室中创造和研究极端条件下的行星材料。我们将第一次知道太阳系是由什么组成的。金刚石砧细胞(DAC)是一种用途广泛且简单的装置,通过在两颗钻石之间按压一个微小的样品(10^8毫升),可以产生比大气压高100万倍甚至更高的压力。dac将与电阻和激光加热相结合,这使我们能够达到接近巨行星外层的条件。在这些压力下,化学反应是不同的,不遵循传统的预期路线。压力使原子之间的距离越来越近,从而引起物质性质的巨大变化。它可以把我们呼吸的空气变成美丽的深红色晶体(氧气),用氮制造半导体聚合物,或者把花生酱变成钻石。当我们误解了行星物质的性质时,我们所有的行星动力学模型都会出错。这个项目的主要兴趣元素将是氢和氦,它们占巨型气体行星质量的87%以上,以及水、氨和甲烷,它们是“冰行星”(海王星和天王星)的主要地幔成分。这些行星有强大的磁场,由发电机机制产生。在木星的例子中,金属液态氢驱动偶极矩,而在天王星的例子中,它的发电机被认为是由于超离子水。这些分子流体的导电性是由行星地幔的极端压力和温度引起的,温度范围从20 GPa和2000 K到600 GPa和7000 K。这个项目的目的是了解氢在行星内部的作用:这是一种金属流体状态。然而,尚不清楚它是否会与氦相互作用,或者它是否能够穿透海王星和天王星的水、氨和甲烷层,形成新的化学结构或积聚成不可穿透的液体滴。拉曼光谱是一种研究物质物理化学性质的有效技术。再加上钻石砧细胞技术,它为行星物质存在的极端条件下的不寻常世界打开了一扇完美的窗户。该项目的一个新颖部分将是在一种称为动态金刚石砧细胞的新型装置中实现快速高温等温压缩,以避免样品基于时间的反应问题,以及氢,氦和水相关材料的特征。这个项目将在利用我的技能和经验的同时实施最先进的拉曼光谱。这是一个集材料、物理、行星和化学科学于一体的多学科项目。FLF将使我能够在与类木行星有关的条件下对物质行为的相变进行首次测量。天体物理学界将受益于行星条件下基本元素行为的可靠实验证据。另一方面,凝聚态物质领域将随着在极端条件下创造的新材料的知识而扩展,并带回环境条件。因此,这个项目需要在不同的科学分支之间建立一个独特的联系,即天体物理学和材料科学。这些实验将使英国处于极端条件和天体物理科学的前沿。对高压科学感兴趣的越来越多的研究小组将直接受益于内部的高压设施,计划(和现有),它们的未来发展以及它们对问题的适应性。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pressure-Induced Synthesis and Properties of an H2S-H2Se-H2 Molecular Alloy.
- DOI:10.1021/acs.jpclett.1c01406
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:M. Peña‐Álvarez;Huixin Hu;M. Marqués;Peter I C Cooke;M. Donnelly;J. Binns;F. Gorelli;E. Gregoryanz;Philip Dalladay-Simpson;G. Ackland;R. Howie
- 通讯作者:M. Peña‐Álvarez;Huixin Hu;M. Marqués;Peter I C Cooke;M. Donnelly;J. Binns;F. Gorelli;E. Gregoryanz;Philip Dalladay-Simpson;G. Ackland;R. Howie
High pressure study of sodium trihydride.
- DOI:10.3389/fchem.2023.1306495
- 发表时间:2023
- 期刊:
- 影响因子:5.5
- 作者:
- 通讯作者:
Chemically Assisted Precompression of Hydrogen Molecules in Alkaline-Earth Tetrahydrides.
- DOI:10.1021/acs.jpclett.2c02157
- 发表时间:2022-09-15
- 期刊:
- 影响因子:5.7
- 作者:Pena-Alvarez, Miriam;Binns, Jack;Marques, Miriam;Kuzovnikov, Mikhail A.;Dalladay-Simpson, Philip;Pickard, Chris J.;Ackland, Graeme J.;Gregoryanz, Eugene;Howie, Ross T.
- 通讯作者:Howie, Ross T.
Superionicity, disorder, and bandgap closure in dense hydrogen chloride.
- DOI:10.1126/sciadv.abi9507
- 发表时间:2021-09-03
- 期刊:
- 影响因子:13.6
- 作者:Binns J;Hermann A;Peña-Alvarez M;Donnelly ME;Wang M;Kawaguchi SI;Gregoryanz E;Howie RT;Dalladay-Simpson P
- 通讯作者:Dalladay-Simpson P
Pressure-Optimized Band Gap and Enhanced Photoelectric Response of Graphitic Carbon Nitride with Nitrogen Vacancies
- DOI:10.1103/physrevapplied.19.024048
- 发表时间:2023-02-16
- 期刊:
- 影响因子:4.6
- 作者:Cheng, Peng;Yao, Deyuan;Ding, Junfeng
- 通讯作者:Ding, Junfeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miriam Pena-Alvarez其他文献
Electronic properties modulation in 13C/12C twisted bilayer graphene via direct compression
通过直接压缩调节 13C/12C 扭曲双层石墨烯的电子特性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Elena del Corro;Kentaro Sato;Miriam Pena-Alvarez;Angel Morales-Garcia;Milan Bousa;Martin Kalbac;Otakar Frank - 通讯作者:
Otakar Frank
Miriam Pena-Alvarez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Original metal-based catalysts for enzyme-inspired CO2 activation
用于酶激发二氧化碳活化的原创金属基催化剂
- 批准号:
DE240100068 - 财政年份:2024
- 资助金额:
$ 154.72万 - 项目类别:
Discovery Early Career Researcher Award
CADMap: Creating Mapped Solid Models of Deformed As-Manufactured Geometries that Link to an Original Reference Design
CADMap:创建链接到原始参考设计的变形制造几何图形的映射实体模型
- 批准号:
2332264 - 财政年份:2023
- 资助金额:
$ 154.72万 - 项目类别:
Standard Grant
'And the eyes of them both were opened': Original Sin in the Poetry of Lucy Hutchinson, Mary Roper and Hester Pulter
“他们俩的眼睛都睁开了”:露西·哈钦森、玛丽·罗珀和海丝特·普尔特诗歌中的原罪
- 批准号:
2887957 - 财政年份:2023
- 资助金额:
$ 154.72万 - 项目类别:
Studentship
The ANTIDOTE Institute- Advancing New Toxicology Investigators in Drug abuse and Original Translational research Efforts
ANTIDOTE Institute - 推动新毒理学研究人员在药物滥用和原创转化研究工作中的发展
- 批准号:
10681927 - 财政年份:2023
- 资助金额:
$ 154.72万 - 项目类别:
SOUNDYARD - ORIGINAL PODCASTS AND STUDIO HUB
Soundyard - 原创播客和工作室中心
- 批准号:
10063224 - 财政年份:2023
- 资助金额:
$ 154.72万 - 项目类别:
Collaborative R&D
A Comprehensive Study of the Manuscripts of the Keizan Jōkin's "Denkōroku": Elucidating the original form and revision process of the text
《经山杂志》手稿综合研究
- 批准号:
23K12017 - 财政年份:2023
- 资助金额:
$ 154.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Screening for bone mineralization-regulating factors using an original in vitro rapid screening system
使用独创的体外快速筛选系统筛选骨矿化调节因子
- 批准号:
23K18591 - 财政年份:2023
- 资助金额:
$ 154.72万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
RI: Small: Towards Abstractive Summarization That Preserves the Original Meaning
RI:小:走向保留原意的抽象概括
- 批准号:
2303678 - 财政年份:2022
- 资助金额:
$ 154.72万 - 项目类别:
Standard Grant
Advanced research on the original drug discovery platform for hereditary intractable Alport syndrome
遗传性难治性阿尔波特综合征原研药平台的深入研究
- 批准号:
22H02810 - 财政年份:2022
- 资助金额:
$ 154.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Towards the utilization of genetic resources in the original countries by using local rice varieties collected more than half-century ago
利用半个多世纪前收集的当地水稻品种,实现原国家遗传资源的利用
- 批准号:
22H02368 - 财政年份:2022
- 资助金额:
$ 154.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




