Mechanical robustness during tissue development and repair

组织发育和修复过程中的机械稳健性

基本信息

  • 批准号:
    MR/W027437/1
  • 负责人:
  • 金额:
    $ 341.13万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

An organ must be of the correct size and shape to effectively perform its functions. Mechanical forces are known to be important in shaping organs. For example, athletes have enlarged hearts due to the extra forces that the heart is subjected to during frequent exercise, and astronauts lose bone mass due to the lack of gravitational force in space to stimulate bone growth. However, there are constant fluctuations in forces from the environment, such as those associated with daily motion, or a trip and a fall. How does our body stop itself from constantly responding to all these fluctuating forces and change shape constantly? These fluctuating forces can sometimes be so extreme that they can cause damage to our organs, such as the breaking of a bone after an accident or the cut of the skin from a knife wound. Not all fluctuations are bad. Small fluctuations (or 'noise') can be important in the control of both biological and non-biological systems, and in their ability to respond to damage. For example, a building that wobbles slightly (but not excessively) is better at withstanding an earthquake. After breaking a bone, gentle motion stimulates bone synthesis, but excessive motion disrupts repair. It is currently unknown how our body organs respond to different levels of external forces, and the potential beneficial or detrimental consequences of these forces. How do organs cope with fluctuating mechanical noises every day and manage to stay in their correct size and shape? How do they repair themselves accurately and quickly after a wound? What is the role of mechanical noise (such as those applied during physiotherapy) during wound repair? How do tissues know when to stop repairing after it has completely healed to minimize scarring and prevent the development of overgrowths and cancer? These are examples of questions we will address during this project. We will use my lab's expertise and approaches from different scientific fields: biology, physics, mathematics, and computer science, to answer these questions. This work will be important for understanding the diversity of biological form in nature, treating diseases affecting tissue size and shape, such as cancer, and in improving wound repair mechanisms to minimise scarring and improve our long term health.
一个器官必须有正确的大小和形状才能有效地发挥其功能。已知机械力在器官成形中是重要的。例如,运动员由于心脏在频繁运动中受到额外的力而使心脏增大,宇航员由于太空中缺乏重力刺激骨骼生长而失去骨量。然而,来自环境的力会不断波动,例如与日常运动或绊倒和跌倒相关的力。我们的身体如何阻止自己不断地对所有这些波动的力量做出反应,并不断改变形状?这些波动的力量有时可能非常极端,以至于它们可能会对我们的器官造成损害,例如事故后骨折或刀伤皮肤。并不是所有的波动都是坏的。小的波动(或“噪音”)在控制生物和非生物系统以及它们对损害的反应能力方面都很重要。例如,一个轻微摇晃(但不过分)的建筑物更能抵御地震。骨折后,轻微的运动会刺激骨骼合成,但过度的运动会破坏修复。目前尚不清楚我们的身体器官如何对不同程度的外力做出反应,以及这些力量的潜在有益或有害后果。器官如何科普每天波动的机械噪音,并设法保持正确的大小和形状?他们如何在受伤后准确快速地修复自己?机械噪声(如物理治疗期间施加的噪声)在伤口修复过程中的作用是什么?组织如何知道何时停止修复后,它已经完全愈合,以尽量减少疤痕和防止过度生长和癌症的发展?这些都是我们在这个项目中要解决的问题的例子。我们将利用我的实验室的专业知识和不同科学领域的方法:生物学,物理学,数学和计算机科学,来回答这些问题。这项工作对于理解自然界生物形式的多样性,治疗影响组织大小和形状的疾病(如癌症)以及改善伤口修复机制以最大限度地减少疤痕并改善我们的长期健康非常重要。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A method for reproducible high-resolution imaging of 3D cancer cell spheroids.
一种对 3D 癌细胞球体进行可重复高分辨率成像的方法。
  • DOI:
    10.1111/jmi.13169
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Phillips TA
  • 通讯作者:
    Phillips TA
Line-scanning speeds up Brillouin microscopy.
线扫描加快了布里渊显微镜的速度。
  • DOI:
    10.1038/s41592-023-01843-w
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Khalilgharibi N
  • 通讯作者:
    Khalilgharibi N
Lymph node homeostasis and adaptation to immune challenge resolved by fibroblast network mechanics.
  • DOI:
    10.1038/s41590-022-01272-5
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    30.5
  • 作者:
    Horsnell, Harry L.;Tetley, Robert J.;De Belly, Henry;Makris, Spyridon;Millward, Lindsey J.;Benjamin, Agnesska C.;Heeringa, Lucas A.;de Winde, Charlotte M.;Paluch, Ewa K.;Mao, Yanlan;Acton, Sophie E.
  • 通讯作者:
    Acton, Sophie E.
TissUExM enables quantitative ultrastructural analysis in whole vertebrate embryos by expansion microscopy.
  • DOI:
    10.1016/j.crmeth.2022.100311
  • 发表时间:
    2022-10-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanlan Mao其他文献

Hybrid cell centred/vertex model for large tissue deformations
用于大组织变形的混合细胞中心/顶点模型
  • DOI:
    10.7712/100016.1788.10661
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    19
  • 作者:
    J. Romero;Payman Mosafa;Yanlan Mao;Robert J. Tetley;N. Asadipour;A. Ferran
  • 通讯作者:
    A. Ferran
Mechanical state transitions in the regulation of tissue form and function
组织形态和功能调节中的机械状态转变
  • DOI:
    10.1038/s41580-024-00719-x
  • 发表时间:
    2024-04-10
  • 期刊:
  • 影响因子:
    90.200
  • 作者:
    Yanlan Mao;Sara A. Wickström
  • 通讯作者:
    Sara A. Wickström
Counting constraints in tissue mechanics
计算组织力学中的约束
  • DOI:
    10.36471/jccm_december_2020_03
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Payman Mosaffa;Robert J. Tetley;A. Rodríguez‐Ferran;Yanlan Mao;J. Muñoz
  • 通讯作者:
    J. Muñoz
Lymph node tissue homeostasis and adaptation to immune challenge resolved by fibroblast network mechanics
成纤维细胞网络力学解决淋巴结组织稳态和对免疫挑战的适应
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harry L. Horsnell;Robert J. Tetley;Henry de Belly;S. Makris;Lindsey J. Millward;Agnesska C. Benjamin;Charlotte M. de Winde;E. Paluch;Yanlan Mao;S. Acton
  • 通讯作者:
    S. Acton
Mechanical Forces during Lymph Node Expansion Govern Fibroblastic Reticular Network Remodeling
淋巴结扩张过程中的机械力控制成纤维细胞网状网​​络重塑
  • DOI:
    10.1101/2021.05.27.446027
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harry L. Horsnell;Robert J. Tetley;Henry de Belly;S. Makris;Agnesska C. Benjamin;E. Paluch;Yanlan Mao;S. Acton
  • 通讯作者:
    S. Acton

Yanlan Mao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanlan Mao', 18)}}的其他基金

SpaceBiomechanics: Effects of microgravity on cell and tissue mechanics during wound healing
空间生物力学:微重力对伤口愈合过程中细胞和组织力学的影响
  • 批准号:
    EP/X03139X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 341.13万
  • 项目类别:
    Fellowship
MRC Transition Support CDA Yanlan Mao
MRC 过渡支持 CDA 毛艳兰
  • 批准号:
    MR/T031646/1
  • 财政年份:
    2020
  • 资助金额:
    $ 341.13万
  • 项目类别:
    Fellowship
Tissue Mechanics in Growth and Regeneration
生长和再生中的组织力学
  • 批准号:
    MR/L009056/1
  • 财政年份:
    2014
  • 资助金额:
    $ 341.13万
  • 项目类别:
    Fellowship
Mathematical modelling of growth control in Drosophila development
果蝇发育中生长控制的数学模型
  • 批准号:
    G0802456/1
  • 财政年份:
    2009
  • 资助金额:
    $ 341.13万
  • 项目类别:
    Fellowship

相似国自然基金

RNA结构稳健性及其进化动力学研究
  • 批准号:
    30700139
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
基于ARVM/GMM-UBM电话语音的说话人识别研究
  • 批准号:
    60272039
  • 批准年份:
    2002
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 341.13万
  • 项目类别:
    Standard Grant
A framework for evaluating and explaining the robustness of NLP models
评估和解释 NLP 模型稳健性的框架
  • 批准号:
    EP/X04162X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 341.13万
  • 项目类别:
    Research Grant
CAREER: Towards Fairness in the Real World under Generalization, Privacy and Robustness Challenges
职业:在泛化、隐私和稳健性挑战下实现现实世界的公平
  • 批准号:
    2339198
  • 财政年份:
    2024
  • 资助金额:
    $ 341.13万
  • 项目类别:
    Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
  • 批准号:
    2339381
  • 财政年份:
    2024
  • 资助金额:
    $ 341.13万
  • 项目类别:
    Continuing Grant
OPUS: Robustness and complexity: how evolution builds precise traits from sloppy components
OPUS:稳健性和复杂性:进化如何从草率的组成部分构建精确的特征
  • 批准号:
    2325755
  • 财政年份:
    2024
  • 资助金额:
    $ 341.13万
  • 项目类别:
    Standard Grant
Advancing plant synthetic gene circuit capability, robustness, and use
提高植物合成基因电路的能力、稳健性和使用
  • 批准号:
    DP240103385
  • 财政年份:
    2024
  • 资助金额:
    $ 341.13万
  • 项目类别:
    Discovery Projects
Robustness-oriented and serviceable design of innovative modular buildings
创新模块化建筑的稳健性和实用性设计
  • 批准号:
    DP240101301
  • 财政年份:
    2024
  • 资助金额:
    $ 341.13万
  • 项目类别:
    Discovery Projects
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335412
  • 财政年份:
    2024
  • 资助金额:
    $ 341.13万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
  • 批准号:
    2319242
  • 财政年份:
    2023
  • 资助金额:
    $ 341.13万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 341.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了