Development of gene editing, optogenetic therapy and robotic eye surgery in large animal models
大型动物模型中基因编辑、光遗传学治疗和机器人眼科手术的发展
基本信息
- 批准号:MR/X013189/1
- 负责人:
- 金额:$ 33.83万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Genetic eye diseases include retinitis pigmentosa, age-related macular degeneration (AMD) and optic neuropathies. Together, they account for the majority of irreversible sight loss worldwide. At Oxford, we are developing a range of pioneering retinal gene therapies, several of which have reached advanced clinical trials, to treat these blinding diseases by addressing the underlying genetic causes. In this project, we aim to bridge the vital gap between studies in small animal models and humans by investigating these therapies in non-human primates (NHPs), before moving into clinical trials.In retinitis pigmentosa and AMD, light detecting cells called photoreceptors are lost, but other retinal cells such as ganglion cells that transmit impulses to the brain remain intact. In LHON, mutations in mitochondrial genes affect the ganglion cells first, so the signal from the retina cannot be sent to the brain. Significant advances have been made in research to develop genetic treatments for these diseases, and we now have an approved gene therapy treatment, Luxturna, for one form of the disease caused by mutations in a specific gene. Gene therapy treatments aim to replace the mutated genes by healthy copies. However, for many patients, mutations are not known and for those who present late, where the photoreceptors have already been loss, gene replacement may not be possible. In these patients, optogenetic therapy is a very promising strategy where light sensitive proteins are expressed in surviving cells of the retina, including ganglion cells, to make them able to detect light and restore vision. However, efficient targeting of these cells with genetic therapies has not been achieved to date. Moreover, as the mitochondria in ganglion cells are affected in LHON, if we can deliver healthy genes to these cells, and in particular to the mitochondria, then there is potential to slow down ganglion cell degeneration and associated loss of vision.In this project we aim to develop a surgical procedure using a robot to more effectively deliver genetic therapies to retinal ganglion cells. The procedure will involve robot-assisted direct infusion into the optic nerve in an animal model, which is currently not possible to perform manually in patients. Having achieved this, we then aim to develop applications for this technique including optogenetic applications and for the treatment of optic neuropathies in future human clinical trials. In addition, the project aims to develop a gene editing system called CRISPR/Cas to knockout or edit human retinal disease-associated genes implicated in AMD. Lastly we aim to assess the efficacy and safety of gene editing in the eye and the immune responses to these new treatments. The approaches have potential to lead to the treatment of a much broader range of blinding diseases. Optogenetic therapy could become a universal treatment and restore vision in any late stage retinal degeneration irrespective of genetic cause. Improved targeting of retinal ganglion cells could lead to potential treatments of LHON and other optic neuropathies including glaucoma, the most common cause of irreversible blindness worldwide. In addition, improved mitochondrial targeting may have implications for treatment of other inherited mitochondrial disease that lead to systemic diseases and involve organs other than the eye.In summary, project will establish the first in UK ocular NHP facility to carry out retinal gene therapy work on par with US and European counterpart academic institutions and facilitate translation of many emerging ocular genetic therapies. This unique platform will enable a wide range of high impact research projects, collaborations both within the UK and internationally, and strengthening the UK's leading role in gene therapy development.
遗传性眼病包括视网膜色素变性、年龄相关性黄斑变性和视神经病变。它们共同造成了全球大部分不可逆的视力丧失。在牛津大学,我们正在开发一系列开创性的视网膜基因疗法,其中一些已经达到了先进的临床试验,通过解决潜在的遗传原因来治疗这些致盲疾病。在这个项目中,我们的目标是在进入临床试验之前,通过在非人类灵长类动物(NHP)中研究这些疗法,弥合小动物模型研究和人类研究之间的重要差距。在视网膜色素变性和AMD中,称为光感受器的光检测细胞丢失,但其他视网膜细胞,如将脉冲传递到大脑的神经节细胞保持完整。在LHON中,线粒体基因的突变首先影响神经节细胞,因此来自视网膜的信号无法发送到大脑。在研究开发这些疾病的基因治疗方面取得了重大进展,我们现在有一种批准的基因治疗方法Luxturna,用于治疗由特定基因突变引起的一种疾病。基因治疗的目的是用健康的拷贝取代突变的基因。然而,对于许多患者来说,突变是未知的,对于那些晚期出现的患者,其中光感受器已经丢失,基因替代可能是不可能的。在这些患者中,光遗传学疗法是一种非常有前途的策略,其中光敏蛋白在视网膜的存活细胞(包括神经节细胞)中表达,使它们能够检测光并恢复视力。然而,迄今为止尚未实现用基因疗法有效靶向这些细胞。此外,由于LHON中神经节细胞中的线粒体受到影响,如果我们能够将健康的基因传递到这些细胞,特别是线粒体,那么就有可能减缓神经节细胞变性和相关的视力丧失。在这个项目中,我们的目标是开发一种使用机器人的外科手术,更有效地将基因治疗传递到视网膜神经节细胞。该手术将涉及机器人辅助的直接注入动物模型中的视神经,这是目前不可能在患者中手动执行的。在实现这一目标后,我们的目标是开发这种技术的应用,包括光遗传学应用和在未来的人类临床试验中治疗视神经病变。此外,该项目旨在开发一种名为CRISPR/Cas的基因编辑系统,以敲除或编辑与AMD有关的人类视网膜疾病相关基因。最后,我们的目标是评估基因编辑在眼睛中的有效性和安全性,以及对这些新疗法的免疫反应。这些方法有可能导致更广泛的致盲性疾病的治疗。光遗传学疗法可能成为一种普遍的治疗方法,可以恢复任何晚期视网膜变性的视力,无论遗传原因如何。视网膜神经节细胞靶向的改善可能导致LHON和其他视神经病变的潜在治疗,包括青光眼,这是全球不可逆失明的最常见原因。此外,改进的线粒体靶向可能对其他遗传性线粒体疾病的治疗产生影响,这些疾病会导致全身性疾病,并涉及眼睛以外的器官。综上所述,项目将建立英国第一个眼科NHP设施,以开展与美国和欧洲同行学术机构同等的视网膜基因治疗工作,并促进许多新兴的眼科基因治疗的翻译。这个独特的平台将使广泛的高影响力的研究项目,在英国和国际上的合作,并加强英国在基因治疗发展的主导作用。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Compound dominant-null heterozygosity in a family with RP1-related retinal dystrophy.
- DOI:10.1016/j.ajoc.2022.101698
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Buckley, Thomas M W;Cehajic-Kapetanovic, Jasmina;Shanks, Morag;Clouston, Penny;MacLaren, Robert E
- 通讯作者:MacLaren, Robert E
Characterizing Visual Fields in RPGR Related Retinitis Pigmentosa Using Octopus Static-Automated Perimetry.
- DOI:10.1167/tvst.11.5.15
- 发表时间:2022-05-02
- 期刊:
- 影响因子:3
- 作者:Buckley, Thomas M. W.;Josan, Amandeep Singh;Taylor, Laura J.;Jolly, Jasleen K.;Cehajic-Kapetanovic, Jasmina;MacLaren, Robert E.
- 通讯作者:MacLaren, Robert E.
Outcomes and Adverse Effects of Voretigene Neparvovec Treatment for Biallelic RPE65-Mediated Inherited Retinal Dystrophies in a Cohort of Patients from a Single Center.
- DOI:10.3390/biom13101484
- 发表时间:2023-10-05
- 期刊:
- 影响因子:5.5
- 作者:
- 通讯作者:
Gene-agnostic therapeutic approaches for inherited retinal degenerations.
- DOI:10.3389/fnmol.2022.1068185
- 发表时间:2022
- 期刊:
- 影响因子:4.8
- 作者:John, Molly C. C.;Quinn, Joel;Hu, Monica L. L.;Cehajic-Kapetanovic, Jasmina;Xue, Kanmin
- 通讯作者:Xue, Kanmin
Potential CRISPR Base Editing Therapeutic Options in a Sorsby Fundus Dystrophy Patient.
- DOI:10.3390/genes13112103
- 发表时间:2022-11-12
- 期刊:
- 影响因子:3.5
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jasmina Cehajic-Kapetanovic其他文献
Robotising vitreoretinal surgeries
机器人化玻璃体视网膜手术
- DOI:
10.1038/s41433-024-03149-3 - 发表时间:
2024-07-04 - 期刊:
- 影响因子:3.200
- 作者:
Helen Mi;Robert E. MacLaren;Jasmina Cehajic-Kapetanovic - 通讯作者:
Jasmina Cehajic-Kapetanovic
Genetic therapies and potential therapeutic applications of CRISPR activators in the eye
基因疗法及 CRISPR 激活剂在眼部的潜在治疗应用
- DOI:
10.1016/j.preteyeres.2024.101289 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:14.700
- 作者:
Benjamin WJ. Ng;Maria K. Kaukonen;Michelle E. McClements;Hoda Shamsnajafabadi;Robert E. MacLaren;Jasmina Cehajic-Kapetanovic - 通讯作者:
Jasmina Cehajic-Kapetanovic
Bioengineering strategies for restoring vision
恢复视力的生物工程策略
- DOI:
10.1038/s41551-021-00836-4 - 发表时间:
2022-01-31 - 期刊:
- 影响因子:26.600
- 作者:
Jasmina Cehajic-Kapetanovic;Mandeep S. Singh;Eberhart Zrenner;Robert E. MacLaren - 通讯作者:
Robert E. MacLaren
Jasmina Cehajic-Kapetanovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jasmina Cehajic-Kapetanovic', 18)}}的其他基金
New genetic therapy approaches for inherited retinal diseases
遗传性视网膜疾病的新基因治疗方法
- 批准号:
MR/V029762/1 - 财政年份:2021
- 资助金额:
$ 33.83万 - 项目类别:
Fellowship
Enhancing ocular gene therapy using glycosidic enzymes
使用糖苷酶增强眼部基因治疗
- 批准号:
G1000268/1 - 财政年份:2010
- 资助金额:
$ 33.83万 - 项目类别:
Fellowship
相似国自然基金
Got2基因对浆细胞样树突状细胞功能的调控及其在系统性红斑狼疮疾病中的作用研究
- 批准号:82371801
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
Pik3r2基因突变在家族内侧颞叶癫痫中的作用及发病机制研究
- 批准号:82371454
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
发展基因编码的荧光探针揭示趋化因子CXCL10的时空动态及其调控机制
- 批准号:32371150
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于FCER1G基因介导免疫反应探讨迟发性聋与认知障碍相关性的机制研究
- 批准号:82371141
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
22q11.2染色体微重复影响TOP3B表达并导致腭裂发生的机制研究
- 批准号:82370906
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
lncGEI诱导湖羊卵巢颗粒细胞E2合成的分子机制
- 批准号:32372856
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
- 批准号:82370790
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
KMT2A基因突变通过DNMT3靶向调控GBP2导致神经发育障碍的机制研究
- 批准号:82371867
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
综合医疗机构引入Gene-Xpert MTB/RIF技术早期发现传染性肺结核和耐药肺结核的研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
Brahma related gene 1/Lamin B1通路在糖尿病肾脏疾病肾小管上皮细胞衰老中的作用
- 批准号:
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Identification of Genetic and Molecular Bases of Derived Phenotypes in Primate Brain Development
灵长类动物大脑发育中衍生表型的遗传和分子基础的鉴定
- 批准号:
10841947 - 财政年份:2023
- 资助金额:
$ 33.83万 - 项目类别:
Role Of Retinoid Oxidoreductase Complex In Controlling The Embryonic Development
类维生素A氧化还原酶复合物在控制胚胎发育中的作用
- 批准号:
10658252 - 财政年份:2023
- 资助金额:
$ 33.83万 - 项目类别:
Development of tools for rapid systematic refinement of in vivo gene editing technologies
开发用于快速系统完善体内基因编辑技术的工具
- 批准号:
10740025 - 财政年份:2023
- 资助金额:
$ 33.83万 - 项目类别:
Development of Organ- and Cell-specific In Vivo Genome Editing Technique as a Novel Approach for Cancer Gene Therapy
开发器官和细胞特异性体内基因组编辑技术作为癌症基因治疗的新方法
- 批准号:
23H02763 - 财政年份:2023
- 资助金额:
$ 33.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of M-Drive: A recyclable Mucor-optimized CAS9 gene-drive system cable of multi-target gene editing
开发M-Drive:可回收的多靶点基因编辑的毛霉优化CAS9基因驱动系统电缆
- 批准号:
10727359 - 财政年份:2023
- 资助金额:
$ 33.83万 - 项目类别:
Investigating the role of cannabinoid receptors in oligodendrocyte development
研究大麻素受体在少突胶质细胞发育中的作用
- 批准号:
10605105 - 财政年份:2023
- 资助金额:
$ 33.83万 - 项目类别:
Development of New Technologies at Roswell Park to Further Cancer-Based Research and Treatment Through Genome Modification
罗斯威尔公园开发新技术,通过基因组修饰进一步开展基于癌症的研究和治疗
- 批准号:
10733275 - 财政年份:2023
- 资助金额:
$ 33.83万 - 项目类别:
Development and evaluation of novel nanoparticle formulations for therapeutic genome editing
用于治疗性基因组编辑的新型纳米颗粒制剂的开发和评估
- 批准号:
479068 - 财政年份:2023
- 资助金额:
$ 33.83万 - 项目类别:
Operating Grants
Loss of Cell Identity as a Prerequisite for Breast Cancer Development
细胞身份的丧失是乳腺癌发生的先决条件
- 批准号:
10350349 - 财政年份:2023
- 资助金额:
$ 33.83万 - 项目类别:
Collaborative Research: EDGE FGT: DEVELOPMENT OF FUNCTIONAL GENETIC TOOLS IN GECKOS
合作研究:EDGE FGT:壁虎功能遗传工具的开发
- 批准号:
10673453 - 财政年份:2023
- 资助金额:
$ 33.83万 - 项目类别: