A Lagrangian Vertical Coordinate Dynamical Core for Global Atmospheric Modelling
全球大气建模的拉格朗日垂直坐标动力核心
基本信息
- 批准号:NE/H006834/1
- 负责人:
- 金额:$ 31.82万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The weather forecasts and climate predictions produced by the Met Office are based on a sophisticated computer model that numerically solves the equations of atmospheric dynamics and thermodynamics. The equations are solved by dividing the Earth's atmosphere up horizontally into cells based on a latitude-longitude grid and vertically into a number of layers or levels. The current Met Office model, and its successor (currently under development, known as ENDGame), define these levels to be at specified heights above the Earth's surface. An alternative would be to use so-called Lagrangian vertical levels, which, by definition move up and down with the fluid. There is some evidence from experiments with computer models around the world that using Lagrangian vertical levels could better capture air mass properties and the transport of moisture and other constituents, and improve the representation of the budget of energy and other important thermodynamic properties such as entropy. This, in turn, could lead to more accurate weather forecasts and more realistic climate simulations and predictions. With this motivation, the aim of the project is to develop a version of ENDGame that uses Lagrangian vertical levels, and carefully assess the extent to which any of the potential benefits have been realized. One of the disadvantages of Lagrangian vertical levels is that, as they move with the fluid, they eventually tilt and fold until they can no longer represent the state of the atmosphere accurately. This folding can take many hours or days high up in the atmosphere but can be much quicker near steep mountains or areas of thunderstorm activity. Therefore, to be used in a computer model, Lagrangian levels must be periodically re-initialized and the model winds and thermodynamic fields remapped to the re-initialized levels. A major part of the proposed work will involve investigating the best way to re-initialize and remap, so that the benefits of using the Lagrangian levels are not degraded. The culmination of the project will be a careful comparison of the transport and conservation properties of the standard ENDGame model using its height-based levels and the new version using Lagrangian levels. Apart from the different vertical levels used, these two models will be as similar as possible; the comparison will therefore be a clean test of the benefits (or otherwise) of the use of Lagrangian levels. Such a clean comparison has not been carried out before. The results will provide valuable information to the Met Office and to other groups around the world developing computer models of the atmosphere. Close contact with the Met Office throughout this project will ensure that, if the Lagrangian vertical coordinate is successful, then it can be readily implemented in the operational version of ENDGame.
英国气象局的天气预报和气候预测是基于一个复杂的计算机模型,该模型通过数值求解大气动力学和热力学方程。这些方程的求解方法是将地球大气层水平地划分为基于经纬度网格的单元,垂直地划分为若干层或水平。目前的气象局模型及其继任者(目前正在开发中,称为ENDGame)将这些水平定义为地球表面以上的特定高度。另一种方法是使用所谓的拉格朗日垂直水平,根据定义,它会随着流体上下移动。从世界各地的计算机模型实验中有一些证据表明,使用拉格朗日垂直水平可以更好地捕捉空气质量特性以及水分和其他成分的传输,并改善能量收支和其他重要热力学特性(如熵)的表现。反过来,这可能导致更准确的天气预报和更现实的气候模拟和预测。有了这个动机,该项目的目标是开发一个使用拉格朗日垂直水平的ENDGame版本,并仔细评估任何潜在利益的实现程度。拉格朗日垂直水准面的一个缺点是,当它们随着流体移动时,它们最终会倾斜和折叠,直到它们不再能准确地代表大气的状态。这种折叠可能需要几个小时或几天的时间,但在陡峭的山脉或雷暴活动区附近可能会快得多。因此,为了在计算机模式中使用,拉格朗日水平必须定期重新初始化,并将模式风场和热力学场重新映射到重新初始化的水平。拟议工作的一个主要部分将涉及调查重新初始化和重新映射的最佳方式,以便不降低使用拉格朗日水平的好处。该项目的高潮将是使用其基于高度的水平和使用拉格朗日水平的新版本的标准ENDGame模型的传输和保护属性的仔细比较。除了使用不同的垂直水平外,这两个模型将尽可能相似;因此,比较将是对使用拉格朗日水平的好处(或其他好处)的一个明确的测试。以前从未进行过如此清晰的比较。这些结果将为英国气象局和世界各地开发大气计算机模型的其他团体提供有价值的信息。在整个项目中与气象局的密切联系将确保,如果拉格朗日垂直坐标成功,那么它可以很容易地在ENDGame的操作版本中实现。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Lagrangian vertical coordinate version of the ENDGame dynamical core. Part II: Evaluation of Lagrangian conservation properties
ENDGame 动力核心的拉格朗日垂直坐标版本。
- DOI:10.1002/qj.3375
- 发表时间:2018
- 期刊:
- 影响因子:8.9
- 作者:Kavcic I
- 通讯作者:Kavcic I
A Lagrangian vertical coordinate version of the ENDGame dynamical core. Part I: Formulation, remapping strategies, and robustness
- DOI:10.1002/qj.3368
- 发表时间:2018-07
- 期刊:
- 影响因子:8.9
- 作者:I. Kavčič;J. Thuburn
- 通讯作者:I. Kavčič;J. Thuburn
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Thuburn其他文献
John Thuburn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Thuburn', 18)}}的其他基金
Understanding and Representing Atmospheric Convection across Scales - ParaCon Phase 2
理解和表示跨尺度的大气对流 - ParaCon 第 2 阶段
- 批准号:
NE/T003863/1 - 财政年份:2019
- 资助金额:
$ 31.82万 - 项目类别:
Research Grant
CoDyPhy: Improved Coupling of Dynamics and Physics for understanding and modelling moist convection
CoDyPhy:改进动力学和物理耦合,用于理解和建模湿对流
- 批准号:
NE/N013123/1 - 财政年份:2016
- 资助金额:
$ 31.82万 - 项目类别:
Research Grant
A scalable dynamical core for Next Generation Weather and Climate Prediction - Phase 2
下一代天气和气候预测的可扩展动力核心 - 第 2 阶段
- 批准号:
NE/K006762/1 - 财政年份:2013
- 资助金额:
$ 31.82万 - 项目类别:
Research Grant
G8 Multilateral Research Funding - ICOMEX
G8 多边研究资助 - ICOMEX
- 批准号:
NE/J005436/1 - 财政年份:2012
- 资助金额:
$ 31.82万 - 项目类别:
Research Grant
NGWCP - Atmospheric model dynamical core
NGWCP - 大气模型动力核心
- 批准号:
NE/I021136/1 - 财政年份:2011
- 资助金额:
$ 31.82万 - 项目类别:
Research Grant
Conservation Remeshing for Adaptive Mesh Modelling of the Atmosphere
大气自适应网格建模的保护网格重整
- 批准号:
NE/H002464/1 - 财政年份:2010
- 资助金额:
$ 31.82万 - 项目类别:
Research Grant
相似海外基金
Light Pulsing in Vertical Farming For Sustainable Fresh Produce: LightPuls-VF
垂直农业中的光脉冲可持续新鲜农产品:LightPuls-VF
- 批准号:
BB/Z51441X/1 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Research Grant
MCA Pilot PUI: From glomeruli to pollination: vertical integration of neural encoding through ecologically-relevant behavior
MCA Pilot PUI:从肾小球到授粉:通过生态相关行为进行神经编码的垂直整合
- 批准号:
2322310 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Continuing Grant
Oxygen vacancy engineering on indium oxide vertical FETs for 3D power scaling
用于 3D 功率缩放的氧化铟垂直 FET 上的氧空位工程
- 批准号:
24K17328 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Vertical GaN-on-Si membrane power transistors: Efficient power electronics for mass-market applications (VertiGaN)`
垂直硅基氮化镓薄膜功率晶体管:面向大众市场应用的高效电力电子器件 (VertiGaN)`
- 批准号:
EP/X014924/1 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Research Grant
Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
- 批准号:
83007861 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Innovation Loans
CLIMA: A Digital Twin Modeling Framework for Climate Adaptive Vertical Infrastructure
CLIMA:气候适应垂直基础设施的数字孪生建模框架
- 批准号:
2332246 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Standard Grant
Vertical Solar Stations - The best equipment power solution in the world | Global Patent Application, UK IP
垂直太阳能电站-世界上最好的设备电源解决方案|
- 批准号:
10103222 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Collaborative R&D
Understanding and exploiting a nitrogen-fixing endophyte for enhancing sustainability and productivity of vertical farming
了解和利用固氮内生菌来提高垂直农业的可持续性和生产力
- 批准号:
BB/Z514354/1 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Research Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 31.82万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 31.82万 - 项目类别:
Standard Grant