Developing enhanced impact models for integration with next generation NWP and climate outputs

开发增强的影响模型以与下一代数值天气预报和气候输出相结合

基本信息

  • 批准号:
    NE/I005307/1
  • 负责人:
  • 金额:
    $ 19.88万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Current best estimates indicate that approximately 5M people living in 2M properties are at risk of flooding resulting from extreme storms in the UK. Of these approximately 200,000 homes are not protected against a 1 in 75 year recurrence interval event, the Government's minimum recommended level of protection. When major floods do occur then total damage costs are high (£3.5Bn for the summer 2007 floods) and the total annual spending on flood defence approaches £800M. Protecting this population and minimizing these costs into the future requires the development of robust hydrologic and hydraulic models to translate the outputs from Numerical Weather Prediction (NWP) and climate models into meaningful estimates of impact (with uncertainty). These predictions of impact can then be used to plan investment decisions, provide real-time warnings, design flood defence schemes and generally help better manage storm risks and mitigate the effects of dangerous climate change. Building on foundations developed by consortium members as part of the NERC Flood Risk from Extreme Events (FREE) and EPSRC/NERC Flood Risk Management Research Consortium (FRMRC) Programmes, we here propose an integrated programme of research that will lead to step change improvements in our ability to quantify storm impacts over both the short and long term. Based on the knowledge gained in the above programmes, we suggest that improvements in storm impact modelling can be achieved through four linked objectives which we are uniquely positioned to deliver. Specifically, these are: 1. Downscaling, uncertainty propagation and evaluation of hydrologic modelling structures. 2. The development of data assimilation and remote sensing approaches to enhance predictions from storm impact models. 3. Fully dynamically coupled extreme storm surge and fluvial modelling. 4. The development of a new class of hydraulic model that can be used to convert predictions of rainfall-runoff or coastal extreme water levels to estimates of flood extent and depth at the resolution of LiDAR data (~1 - 2m horizontal resolution) over whole city regions using a true momentum-conserving approach. In this proposal we evaluate the potential of the above four approaches to reduce the uncertainty in ensemble predictions of storm impact given typical errors in the NWP and climate model outputs which are used as boundary forcing for impact modelling chains. Our initial characterization of the errors in predicted storm features (spatial rainfall and wind speed fields) in current implementations of NWP and climate models will be based on existing studies conducted by the UK Met Office and the University of Reading. As the project proceeds we will use the advances in storm modelling being developed for Deliverables 1 and 2 of this call to enhance our error characterizations and ensure that the techniques we develop are appropriate for current and future meteorological modelling technologies. We will rigorously evaluate the success of our proposed methods through the use of unique benchmark data sets of storm impact being developed at the Universities of Bristol and Reading.
目前最好的估计表明,大约有500万人生活在200万财产面临洪水的风险,造成极端风暴在英国。在这些家庭中,约有200,000个家庭没有受到政府建议的最低保护水平,即每75年发生一次的事件的保护。当发生大洪水时,总损失成本很高(2007年夏季洪水为35亿英镑),每年防洪总支出接近8亿英镑。保护这些人口并最大限度地减少未来的成本需要开发强大的水文和水力模型,将数值天气预报(NWP)和气候模型的输出转化为有意义的影响估计(具有不确定性)。这些影响预测可用于规划投资决策,提供实时预警,设计洪水防御计划,并通常有助于更好地管理风暴风险和减轻危险的气候变化的影响。在联盟成员开发的基础上,作为极端事件的NERC洪水风险(免费)和EPSRC/NERC洪水风险管理研究联盟(FRMRC)计划的一部分,我们在这里提出了一个综合的研究计划,这将导致我们在短期和长期内量化风暴影响的能力逐步改善。根据上述方案中获得的知识,我们建议通过我们独特的定位来实现四个相互关联的目标,以改善风暴影响建模。具体而言,这些是:1.水文模拟结构的尺度缩小、不确定性传播和评价。2.发展数据同化和遥感方法以加强风暴影响模型的预测。3.极端风暴潮与河流完全动力耦合模拟。4.开发一种新的水力模型,可用于将洪水径流或沿海极端水位的预测转换为整个城市区域的LiDAR数据分辨率(水平分辨率约1 - 2米)的洪水范围和深度的估计,使用真正的动量守恒方法。在本提案中,我们评估了上述四种方法的潜力,以减少风暴影响的集合预测的不确定性,因为NWP和气候模式输出中的典型误差被用作影响建模链的边界强迫。我们的初步表征的误差预测风暴功能(空间降雨量和风速场)在目前实施的数值预报和气候模式将根据现有的研究进行的英国气象局和阅读大学。随着项目的进行,我们将利用正在为这一呼吁的可预测性1和2开发的风暴建模方面的进展,以增强我们的错误特征,并确保我们开发的技术适用于当前和未来的气象建模技术。我们将通过使用布里斯托和阅读大学正在开发的风暴影响的独特基准数据集,严格评估我们提出的方法的成功。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Horsburgh其他文献

The international workshop on wave hindcasting and forecasting and the coastal hazards symposium
  • DOI:
    10.1007/s10236-015-0827-9
  • 发表时间:
    2015-03-26
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Øyvind Breivik;Val Swail;Alexander V. Babanin;Kevin Horsburgh
  • 通讯作者:
    Kevin Horsburgh
The 14th international workshop on wave hindcasting and forecasting and the 5th coastal hazards symposium
  • DOI:
    10.1007/s10236-017-1033-8
  • 发表时间:
    2017-02-06
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Øyvind Breivik;Jose Henrique Alves;Diana Greenslade;Kevin Horsburgh;Val Swail
  • 通讯作者:
    Val Swail

Kevin Horsburgh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Horsburgh', 18)}}的其他基金

Addressing Challenges of Coastal Communities through Ocean Research for Developing Economies (ACCORD) (2020-2021)
通过发展中经济体海洋研究应对沿海社区的挑战(ACCORD)(2020-2021)
  • 批准号:
    NE/T012420/1
  • 财政年份:
    2020
  • 资助金额:
    $ 19.88万
  • 项目类别:
    Research Grant
Synthesising Unprecedented Coastal Conditions: Extreme Storm Surges (SUCCESS)
综合前所未有的海岸条件:极端风暴潮(成功)
  • 批准号:
    NE/P009158/1
  • 财政年份:
    2017
  • 资助金额:
    $ 19.88万
  • 项目类别:
    Research Grant
Addressing Challenges of Coastal Communities through Ocean Research for Developing Economies (ACCORD).
通过发展中经济体海洋研究应对沿海社区的挑战(ACCORD)。
  • 批准号:
    NE/R000123/1
  • 财政年份:
    2017
  • 资助金额:
    $ 19.88万
  • 项目类别:
    Research Grant

相似国自然基金

噬菌体靶向肠道粪肠球菌提高帕金森病左旋多巴疗效的机制研究
  • 批准号:
    82371251
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Multimodal Disaster Impact Assessment Models for Enhanced Resilience
增强抵御能力的多模式灾害影响评估模型
  • 批准号:
    2242767
  • 财政年份:
    2023
  • 资助金额:
    $ 19.88万
  • 项目类别:
    Standard Grant
Impact of Enhanced Healthcare on Labor Market Participation
加强医疗保健对劳动力市场参与的影响
  • 批准号:
    2315921
  • 财政年份:
    2023
  • 资助金额:
    $ 19.88万
  • 项目类别:
    Standard Grant
Microvascular Neuroimaging in Age-related Alzheimer's Disease and Tauopathies
年龄相关性阿尔茨海默病和 Tau蛋白病的微血管神经影像学
  • 批准号:
    10738372
  • 财政年份:
    2023
  • 资助金额:
    $ 19.88万
  • 项目类别:
Artificial intelligence analysis of atrial remodeling evolution in patients with atrial fibrillation: Towards optimal ablation strategies
心房颤动患者心房重塑演变的人工智能分析:寻求最佳消融策略
  • 批准号:
    10559270
  • 财政年份:
    2023
  • 资助金额:
    $ 19.88万
  • 项目类别:
NATIVE RISE-Risk Identification for Suicide and Enhanced care for Native Americans
NATIVE RISE-自杀风险识别和加强对美洲原住民的护理
  • 批准号:
    10643067
  • 财政年份:
    2023
  • 资助金额:
    $ 19.88万
  • 项目类别:
Impact of Nursing Home Leadership Care Environments and Health Information Technology on Outcomes of Residents with Alzheimer's Disease and Related Dementias (ADRD)
疗养院领导护理环境和健康信息技术对阿尔茨海默病和相关痴呆症 (ADRD) 居民预后的影响
  • 批准号:
    10583354
  • 财政年份:
    2023
  • 资助金额:
    $ 19.88万
  • 项目类别:
aiAuditSense+:Redefining AI Assurance for Financial Sectors through Tailored GEIT Solutions for Impact Assessment and Enhanced Reliability
aiAuditSense:通过定制的 GEIT 解决方案进行影响评估和增强可靠性,重新定义金融部门的人工智能保证
  • 批准号:
    10072863
  • 财政年份:
    2023
  • 资助金额:
    $ 19.88万
  • 项目类别:
    Grant for R&D
Behind the cell door: Exploring how enhanced opportunities for self-led creativity impact on the mental wellbeing of adults living in prison.
牢房门背后:探索增强自我主导创造力的机会如何影响监狱中成年人的心理健康。
  • 批准号:
    2881151
  • 财政年份:
    2023
  • 资助金额:
    $ 19.88万
  • 项目类别:
    Studentship
EPHEDRA: Enhanced PHthisic by Environmental Disruptors of Resolution Agonists
麻黄:通过消解激动剂的环境干扰剂增强肺结核
  • 批准号:
    10662073
  • 财政年份:
    2022
  • 资助金额:
    $ 19.88万
  • 项目类别:
Role of decorin and diffusion MRI in anti-VEGF efficacy for recurrent glioblastoma
核心蛋白聚糖和扩散 MRI 在复发性胶质母细胞瘤抗 VEGF 疗效中的作用
  • 批准号:
    10590620
  • 财政年份:
    2022
  • 资助金额:
    $ 19.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了