Towards a Next generation Ocean Model in the Gung-Ho frame form: 2D test cases (G-Ocean:2D)

以 Gung-Ho 框架形式迈向下一代海洋模型:2D 测试用例 (G-Ocean:2D)

基本信息

  • 批准号:
    NE/L01209X/1
  • 负责人:
  • 金额:
    $ 9.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

This project aims to develop and test a new a software approach to coding ocean models that can exploit the next generation of computer architectures. Ocean models form a vital component of the climate models that produce future climate projections, for example, for the Inter Governmental Panel on Climate Change. They are also important tools for exploring all aspects of the marine environment from coastal to shelf sea and global scales. The use of ocean models relies on national computer facilities that are among the fastest computers in the world. Computer power tends to approximately double every two years, and as these facilities improve then so does the potential for ocean models to provide more accurate simulations, with benefits for climate and weather forecasting, as well as our understanding of the marine environment. However, increases in computer power are now occurring primarily through increased parallelism, with more computer corers per chip and more chips per computer. Hence to exploit increases in computer power we must develop models that can exploit as many different forms of parallelism as possible. While there are many ways of achieving this, they are generally at the expense of the easy of the development of the model, until we might expected only a computer science expert to be able to develop the ocean model - an unreasonable expectation. One of the particular ways oceans scientists would want to use this increase in computer power is by targeting horizontal resolution where the scientific understanding dictates or where it is particularly important for the application.A solution to the computational issue has been identified in an on-going project to develop a new atmospheric model for the UK Met Office (GungHo) to meet many of the same challenges and opportunities identified here. The proposed solution is to separate the model computer code into layers, each requiring different expertise to develop, and so isolate the natural scientist from the complexities of the computer science aspects. While oceans and the atmosphere show many similarities in their physics, they are some important differences, notably the large changes in depth for the ocean and present of land giving complex boundaries and also implying the oceans do not cover the whole globe as the atmosphere does. This naturally leads to ocean modellers not necessarily making the same choices, as in the atmospheric model. Hence, the aim of this project is to apply the 'layered approach' to a simple ocean case to prove the concepts:1. That the computational framework under development in Gung-Ho is sufficiently flexible to accommodate the natural choices of grids and solution approaches for ocean models2. That, when coded within this framework, conventional modelling approaches can perform at least as well as the existing models in terms of their efficiency and scalability, and also have benefits of ease of use and development when highly optimisedThis work will provide a first view of how an ocean model built and designed in the GungHo framework is likely to perform. The tools built here will allow us to explore ocean model design and help answer the question: Are the approaches being developed for GungHo appropriate for the ocean? Or will alternatives be needed? The long term impact of this work is potentially very far reaching. The vision is that this is the first step on the route to an ocean model that runs efficiently on hundreds of thousands to millions of computational cores and has flexibility to change resolution as the science or user interest dictates, but is also readily usable by oceanographers of many disciplines. Realising this vision would represent a step change in Earth System Modelling and Regional System Modelling capability that would be truly world leading.
该项目旨在开发和测试一种新的软件方法来编码海洋模型,可以利用下一代计算机架构。海洋模型是为政府间气候变化专门委员会等机构提供未来气候预测的气候模型的重要组成部分。它们也是探索从沿海到陆架海和全球范围的海洋环境所有方面的重要工具。海洋模型的使用依赖于国家计算机设施,这些设施是世界上最快的计算机之一。计算机能力每两年大约翻一番,随着这些设施的改进,海洋模型提供更准确模拟的潜力也在增加,这对气候和天气预报以及我们对海洋环境的理解都有好处。然而,计算机能力的增加现在主要是通过增加并行性来实现的,每个芯片有更多的计算机核心,每个计算机有更多的芯片。因此,为了利用计算机能力的增加,我们必须开发出能够利用尽可能多的不同形式的并行性的模型。虽然有许多方法可以实现这一点,但它们通常以牺牲模型开发的容易性为代价,直到我们可能期望只有计算机科学专家能够开发海洋模型-这是一个不合理的期望。海洋科学家希望利用这种计算机能力的增加的一种特殊方式是在科学理解要求或对应用特别重要的地方瞄准水平分辨率。在一个正在进行的项目中确定了计算问题的解决方案,为英国气象局(GungHo)开发一个新的大气模型,以满足这里确定的许多相同的挑战和机遇。提出的解决方案是将模型计算机代码分成几层,每层都需要不同的专业知识来开发,从而将自然科学家与计算机科学方面的复杂性隔离开来。虽然海洋和大气在物理学上有许多相似之处,但也有一些重要的区别,特别是海洋深度的巨大变化和陆地的存在,使边界复杂,也意味着海洋不像大气那样覆盖整个地球仪。这自然会导致海洋建模者不一定像在大气模型中那样做出相同的选择。因此,本项目的目的是将“分层方法”应用到一个简单的海洋案例中,以证明以下概念:1。Gung-Ho正在开发的计算框架足够灵活,可以适应海洋模型网格和求解方法的自然选择2。当在这个框架内编码时,传统的建模方法在效率和可扩展性方面至少可以与现有模型一样好地执行,并且在高度优化时也具有易于使用和开发的优点。这项工作将提供在GungHo框架中构建和设计的海洋模型如何执行的第一个视图。这里构建的工具将使我们能够探索海洋模型设计,并帮助回答这个问题:GungHo开发的方法是否适合海洋?或者是否需要替代方案?这项工作的长期影响可能非常深远。我们的愿景是,这是通往海洋模型的第一步,该模型可以在数十万到数百万个计算核心上高效运行,并且可以根据科学或用户兴趣灵活地改变分辨率,但也可以被许多学科的海洋学家使用。实现这一愿景将代表地球系统建模和区域系统建模能力的一步变化,这将是真正的世界领先。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Performance Portability in GungHo and GOcean
在 GungHo 和 GOcean 中实现性能可移植性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ashworth, M.
  • 通讯作者:
    Ashworth, M.
Towards Compiler-Agnostic Performance in Finite-Difference Codes
实现有限差分代码中与编译器无关的性能
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Porter, AR
  • 通讯作者:
    Porter, AR
Evaluating the Scalability of Stencil Codes at Scale
大规模评估模板代码的可扩展性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Modani, M
  • 通讯作者:
    Modani, M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mike Ashworth其他文献

Mike Ashworth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mike Ashworth', 18)}}的其他基金

GPU Acceleration of the NEMO Ocean Model (GNEMO)
NEMO 海洋模型 (GNEMO) 的 GPU 加速
  • 批准号:
    NE/I00095X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 9.26万
  • 项目类别:
    Research Grant
An incompressible smoothed particle hydrodynamics (ISPH) wave basin with structure interaction for fully nonlinear and extreme coastal waves
具有结构相互作用的不可压缩平滑粒子流体动力学 (ISPH) 波池,适用于完全非线性和极端沿海波浪
  • 批准号:
    EP/H018603/1
  • 财政年份:
    2010
  • 资助金额:
    $ 9.26万
  • 项目类别:
    Research Grant
Towards Generic Scalability of the Unifed Model
实现统一模型的通用可扩展性
  • 批准号:
    EP/F010885/1
  • 财政年份:
    2007
  • 资助金额:
    $ 9.26万
  • 项目类别:
    Research Grant

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

TEXAS: Towards next-generation AMR surveillance: Assessment of novel technologies with high-throughput and multiplexing potential
德克萨斯州:迈向下一代 AMR 监测:评估具有高通量和多重潜力的新技术
  • 批准号:
    MR/Z000017/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.26万
  • 项目类别:
    Research Grant
Towards the next generation probabilistic flood forecasting system for the UK
英国下一代概率洪水预报系统
  • 批准号:
    2907694
  • 财政年份:
    2024
  • 资助金额:
    $ 9.26万
  • 项目类别:
    Studentship
CAREER: Towards Efficient Cryptography for Next Generation Applications
职业:面向下一代应用的高效密码学
  • 批准号:
    2402031
  • 财政年份:
    2023
  • 资助金额:
    $ 9.26万
  • 项目类别:
    Continuing Grant
Towards deterministic atomic scale manufacturing of next-generation quantum devices
迈向下一代量子器件的确定性原子尺度制造
  • 批准号:
    EP/X021963/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.26万
  • 项目类别:
    Fellowship
Towards next-generation AMR surveillance: Assessment of novel technologies with high-throughput and multiplexing potential
迈向下一代 AMR 监测:评估具有高通量和多重潜力的新技术
  • 批准号:
    487179
  • 财政年份:
    2023
  • 资助金额:
    $ 9.26万
  • 项目类别:
    Operating Grants
ERI: Towards Environment-Aware Wireless Communications for Next Generation Networks
ERI:迈向下一代网络的环境感知无线通信
  • 批准号:
    2243089
  • 财政年份:
    2023
  • 资助金额:
    $ 9.26万
  • 项目类别:
    Standard Grant
(PHYMOL) Physics, Accuracy and Machine Learning: Towards the next-generation of Molecular Potentials
(PHYMOL) 物理学、准确性和机器学习:迈向下一代分子潜力
  • 批准号:
    EP/X036863/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.26万
  • 项目类别:
    Research Grant
I-Corps: Technology Towards Next Generation Batteries
I-Corps:下一代电池技术
  • 批准号:
    2317180
  • 财政年份:
    2023
  • 资助金额:
    $ 9.26万
  • 项目类别:
    Standard Grant
Systematic identification of synthetic interactions in bacteria towards the next-generation of antibiotics
系统鉴定细菌与下一代抗生素的合成相互作用
  • 批准号:
    468567
  • 财政年份:
    2022
  • 资助金额:
    $ 9.26万
  • 项目类别:
    Operating Grants
Next-Generation Enabling Technologies Towards Precision and Personalized Medicine
实现精准和个性化医疗的下一代支持技术
  • 批准号:
    RGPIN-2020-04434
  • 财政年份:
    2022
  • 资助金额:
    $ 9.26万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了