GEOMETRIC: Geometry and Energetics of Ocean Mesoscale Eddies and Their Representation in Climate models

几何:海洋中尺度涡旋的几何和能量及其在气候模型中的表示

基本信息

  • 批准号:
    NE/R000999/1
  • 负责人:
  • 金额:
    $ 58.83万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

The ocean circulation is dominated by an energetic mesoscale eddy field on spatial scales of 10-100 km, analogous to weather systems in the atmosphere. These eddies are unresolved, or at best inadequately resolved, in the ocean models used for long-range climate projections. Thus it is necessary to parameterise the impacts of the missing mesoscale eddies on the large-scale circulation. The vast majority of numerical ocean circulation models employ the Gent and McWilliams "eddy parameterisation" which acts to flatten density surfaces, mimicking the release of potential energy to fuel the growth of the mesoscale eddies. A key parameter in this eddy parameterisation is the "eddy diffusivity", which is critical as it plays a leading order role in setting global ocean circulation, stratification and heat content, the adjustment time scale of the global circulation, and potentially atmospheric CO2. In this project, we will implement a new closure for the Gent and McWilliams eddy diffusivity, derived from first principles, which depends only on the ocean stratification, the eddy energy and a non-dimensional parameter that is less than or equal to 1. If the eddy energy is known, then there is no freedom to specify explicitly any additional dimensional parameters, such as an eddy diffusivity. For this reason, we argue that existing approaches to parameterising eddies in ocean climate models are fundamentally flawed. Our new approach requires solving an equation for the depth-integrated eddy energy. This is a significant challenge and will form a major component of the present project. However, we believe that solving for the eddy energy is tractable as we have some understanding of the key physical ingredients. These key ingredients include the source of eddy energy through instability of the large-scale flow, westward propagation of eddies, diffusion of eddy energy, dissipation of eddy energy in western boundary "eddy graveyards", and dissipation of eddy energy through bottom drag and lee wave generation. Once a consistent eddy energy budget is incorporated, our new eddy parameterisation leads to three highly desirable results, which serve as important proofs of concept: 1. It reproduces the correct dimensional growth rate for eddies in a simple model of instability of atmospheric and oceanic flows for which there is an exact mathematical solution.2. Assuming perfect knowledge of the eddy energy, it reproduces the eddy diffusivity diagnosed from high-resolution computer simulations of fully turbulent instabilities. 3. It predicts and explains the physics of "eddy saturation", the remarkable insensitivity of the size of the Antarctic Circumpolar Current to surface wind forcing, and a long standing challenge and known deficiency of current eddy parameterisations. The work plan will consist of four inter-related work packages: 1. Implementation and validation of the new eddy parameterisation framework in the NEMO ocean model, used by NERC and the UK Met Office, along with other European partners. 2. Development and refinement of the parameterised eddy energy budget. 3. Quantifying the impact of the new parameterisation on the oceanic uptake of heat and passive tracers in the UK Earth System Model, used for the UK contribution to the Intergovernmental Panel for Climate Change (IPCC) climate projections. 4. Project management, to ensure that the work is delivered fully and in a timely manner.
在10-100公里的空间尺度上,海洋环流由一个充满活力的中尺度涡动场控制,类似于大气中的天气系统。在用于长期气候预测的海洋模式中,这些涡旋没有得到解决,或者充其量没有得到充分解决。因此,有必要将缺失的中尺度涡对大尺度环流的影响参数化。绝大多数数值海洋环流模式采用Gent和McWilliams的“涡参数化”,其作用是使密度面变平,模拟势能的释放,以促进中尺度涡的增长。在这种涡流参数化的一个关键参数是“涡流扩散率”,这是至关重要的,因为它在设置全球海洋环流,分层和热含量,全球环流的调整时间尺度,以及潜在的大气CO2中起着主导作用。在这个项目中,我们将实现一个新的封闭的根特和麦克威廉姆斯涡扩散率,来自第一原理,这只取决于海洋分层,涡能和一个无量纲参数,小于或等于1。如果涡流能量是已知的,那么就没有明确指定任何附加尺寸参数的自由,例如涡流扩散率。出于这个原因,我们认为,现有的方法参数化海洋气候模型中的涡旋是根本性的缺陷。我们的新方法需要解决一个方程的深度积分涡流能量。这是一项重大挑战,将构成本项目的一个主要组成部分。然而,我们相信,解决涡流能量是容易的,因为我们有一些了解的关键物理成分。这些关键成分包括通过大尺度流动的不稳定性产生的涡动能量的来源、涡动的向西传播、涡动能量的扩散、西部边界“涡动墓地”中涡动能量的耗散以及通过底阻力和背风波产生的涡动能量的耗散。一旦纳入一致的涡流能量预算,我们的新的涡流参数化导致三个非常理想的结果,作为重要的概念证明:1。它再现了正确的尺寸增长率的涡流在一个简单的模型的不稳定性的大气和海洋流动,有一个精确的数学解决方案。假设完美的知识的涡流能量,它再现诊断完全湍流不稳定性的高分辨率计算机模拟的涡流扩散。3.它预测和解释的物理“涡流饱和”,南极绕极流的大小表面风强迫显着的不敏感性,以及长期存在的挑战和已知的缺陷电流涡流parameterisations。工作计划将包括四个相互关联的工作包:1.在NEMO海洋模型中实施和验证新的涡流参数化框架,NERC和英国气象局沿着其他欧洲合作伙伴使用。2.参数化涡动能量收支的发展和改进。3.量化新参数化对英国地球系统模型中海洋吸收热量和被动示踪剂的影响,用于英国对政府间气候变化专门委员会(IPCC)气候预测的贡献。4.项目管理,确保工作全面及时地交付。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Acute Sensitivity of Global Ocean Circulation and Heat Content to Eddy Energy Dissipation Timescale
  • DOI:
    10.1029/2021gl097259
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    J. Mak;David P. Marshall;G. Madec;J. Maddison
  • 通讯作者:
    J. Mak;David P. Marshall;G. Madec;J. Maddison
Implications of Eddy Cancellation for Nutrient Distribution Within Subtropical Gyres
  • DOI:
    10.1029/2018jc013842
  • 发表时间:
    2018-09-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Doddridge, Edward W.;Marshall, David P.
  • 通讯作者:
    Marshall, David P.
A Geometric Interpretation of Southern Ocean Eddy Form Stress
南大洋涡流应力的几何解释
Acute sensitivity of global ocean circulation and heat content to eddy energy dissipation time-scale
全球海洋环流和热含量对涡旋能量耗散时间尺度的急性敏感性
  • DOI:
    10.48550/arxiv.2204.02074
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mak J
  • 通讯作者:
    Mak J
Ertel Potential Vorticity versus Bernoulli Potential on Approximately Neutral Surfaces in the Antarctic Circumpolar Current
南极绕极流中近似中性表面上的埃特尔位涡度与伯努利势的关系
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Marshall其他文献

Effects of interventions on depression and anxiety in older people with physical health problems in the criminal justice system: a systematic review.
刑事司法系统中对有身体健康问题的老年人抑郁和焦虑的干预措施的影响:系统评价。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Perry;David Marshall;Thirimon Moe;Sarah Knowles;R. Churchill;M. Harden;S. Parrott;J. Schofield;K. Williamson;Lisa Ashton
  • 通讯作者:
    Lisa Ashton
A Systematic Review of Risk Factors Implicated in the Suicide of Police Officers
警察自杀风险因素的系统审查
Patient-Specific Computational Modelling Of Embolic Stroke
  • DOI:
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Marshall
  • 通讯作者:
    David Marshall
Current constriction of Li-ion transport across lithium metal–ceramic electrolyte interface: Imaged with X-ray Tomography
锂离子跨锂金属-陶瓷电解质界面传输的电流收缩:用 X 射线断层扫描成像
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Aly Badran;Thomas Clemenceau;Niriaina E. Andriamady;David Marshall;R. Raj
  • 通讯作者:
    R. Raj
Restaurant menu re-design as a facilitator of more responsible consumer choice: An exploratory and preliminary study
  • DOI:
    10.1016/j.jhtm.2017.09.005
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Viachaslau Filimonau;Christian Lemmer;David Marshall;Gisel Bejjani
  • 通讯作者:
    Gisel Bejjani

David Marshall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Marshall', 18)}}的其他基金

Transient tracer-based Investigation of Circulation and Thermal Ocean Change (TICTOC)
基于瞬态示踪剂的环流和热海洋变化调查 (TICTOC)
  • 批准号:
    NE/P019218/1
  • 财政年份:
    2017
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
The UK Overturning in the Subpolar North Atlantic Program (UK-OSNAP)
英国在次极地北大西洋计划中的颠覆(UK-OSNAP)
  • 批准号:
    NE/K010948/1
  • 财政年份:
    2013
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
OSMOSIS
渗透
  • 批准号:
    NE/I019921/1
  • 财政年份:
    2011
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
Numerical modelling of ocean circulation using a vorticity-potential method
使用涡势法对海洋环流进行数值模拟
  • 批准号:
    NE/I015345/1
  • 财政年份:
    2011
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
Role of ocean eddies in glacial cycles
海洋涡流在冰川循环中的作用
  • 批准号:
    NE/H005668/1
  • 财政年份:
    2010
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
A new approach to parameterizing ocean eddies: energetics, conservation and flow stability
海洋涡流参数化的新方法:能量学、守恒和流动稳定性
  • 批准号:
    NE/H020454/1
  • 财政年份:
    2010
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
Adjoint sensitivity of sea-level and inter-basin transports to surface forcing and circulation anomalies in present and future climates
当前和未来气候中海平面和流域间输送对地表强迫和环流异常的伴随敏感性
  • 批准号:
    NE/F00236X/1
  • 财政年份:
    2008
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
Separation of oceanic boundary layers.
海洋边界层的分离。
  • 批准号:
    NER/A/S/2003/00595/2
  • 财政年份:
    2007
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
Attribution of ocean climate change signals in the Atlantic.
大西洋海洋气候变化信号的归因。
  • 批准号:
    NE/C509266/2
  • 财政年份:
    2007
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
The Molecular Nature and Dynamics of Solid-Liquid Interface Sorptive Systems
固液界面吸附系统的分子性质和动力学
  • 批准号:
    8719266
  • 财政年份:
    1988
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Continuing Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
  • 批准号:
    2412346
  • 财政年份:
    2024
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Standard Grant
Discrete Geometry and Convexity
离散几何和凸性
  • 批准号:
    2349045
  • 财政年份:
    2024
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
  • 批准号:
    2342225
  • 财政年份:
    2024
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Fellowship Award
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Continuing Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了