Learning to adapt to an uncertain future: linking genes, trees, people and processes for more resilient treescapes (newLEAF)
学习适应不确定的未来:将基因、树木、人类和过程联系起来,打造更具弹性的树景 (newLEAF)
基本信息
- 批准号:NE/V019813/1
- 负责人:
- 金额:$ 127.74万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This proposal addresses Theme 3: Resilience of UK Treescapes to global change.Treescapes - our woodlands, our forests, our urban trees - are critical to our environment, our health and well-being and our ability to transition to a zero carbon economy via plans to substantially increase tree numbers in the landscape. However, climate change and increasing risks from pests and disease threaten the UK treescape like never before. This future is uncertain but we do know that our treescapes must change to survive and thrive. Although we may see treescapes as permanent or fixed, in truth they have an amazing capacity to be dynamic and shift on timescales that are relevant to human lifespans. Indeed, it is often only human interventions that have prevented populations from changing and adapting. For example, where uncontrolled grazing is allowed, little or no regeneration occurs and there is no opportunity for new genetic diversity to enter the population and for the population to adapt. For treescapes to be resilient, change is essential, but this can take many forms - from low intervention, allowing regeneration but taking little other action, to highly managed situations like production forestry, where deliberate choices can be taken to deploy particular genotypes to track environmental shifts. To understand, live with and shape change within treescapes, we must first learn from how treescapes have changed in the past, then quantify how much potential they have to change in the future, and finally develop ways of building change into our treescapes and the ways we interact with them. This proposal outlines newLEAF, a project to evaluate options for using the extensive natural genetic variation within tree species to keep pace with expected changes in climate and the biotic (pest & disease) environment. Firstly, we will learn from the past 100 years of treescape management in the UK, bringing together historical information on policy and practice with data on changing tree populations on the ground to understand the link between choices made at a policy level and the outcomes for treescape resilience. Then we will quantify the rate of adaptation that can be achieved by both natural and human selection in key tree species for the UK, focusing on traits linked to fitness in forecasted environments and susceptibility to pests and pathogens. We will compare the impacts that natural regeneration versus planting has on the development of biotic communities associated with trees, particularly fungi and insect vectors with the potential to mediate risk. Drawing directly from the experimental work, we will design models incorporating data on trait variability and will evaluate how internal adaptability within tree species can be used, in varying compositions, configurations and under different management regimes, to generate diverse and dynamic treescapes with an in-built capability to track environmental changes, even when that change is uncertain. We will test tools and strategies to minimise risk from pests and pathogens, especially those associated with planned increases in tree numbers in the landscape, learning from the interactions between our set of focal species and their associated communities. Working with stakeholders, we will explore the social and economic drivers that can be deployed to effect change in the landscape, learning from historical environmental policies and their outcomes in the UK and from key case studies in similar systems across Europe. A particular focus will be on people engaging with the concepts of uncertainty, dynamism and change, studying new ways to integrate science and the arts and creating new works framed around these ideas. Bringing together this diverse and multidisciplinary team, we will produce new research, guidance, policy recommendations, art and science-based tools that will advance the cause of resilience in the UK's future treescape.
该提案涉及主题3:英国树木对全球变化的韧性。树木 - 我们的林地,我们的森林,我们的城市树 - 对我们的环境,我们的健康和福祉以及我们通过计划通过大幅增加景观树木数量过渡到零碳经济的能力至关重要。但是,气候变化和害虫的风险增加,威胁到前所未有的英国树木。这一未来是不确定的,但我们确实知道我们的树木必须改变以生存和壮成长。尽管我们可能会认为树木是永久性的或固定的,但实际上,它们具有令人惊奇的动态和对与人类寿命相关的时间尺度转变的惊人能力。确实,通常只有人为干预才能阻止人口发生变化和适应。例如,在允许不受控制的放牧的地方,很少或没有再生,并且没有机会让新的遗传多样性进入人群和人群适应。为了使树木具有弹性,更改是必不可少的,但是这可以采取多种形式 - 从低干预,允许再生但几乎没有其他行动,到诸如生产林业等高度管理的情况,在这种情况下,可以采取故意选择来部署特定的基因型来追踪环境变化。要了解,与树木景观内的变化,生活和塑造变化,我们必须首先了解树木景点过去的变化,然后量化它们将来必须改变的潜力,并最终将建筑物变化为我们的树木景观以及我们与它们互动的方式。该提案概述了Newleaf,该项目旨在评估使用树种内广泛的自然遗传变异的选择,以使气候和生物(Pest&Disea)环境的预期变化保持同步。首先,我们将从英国过去100年的Treecape管理中学习,将有关政策和实践的历史信息与有关地面上不断变化的树木种群的数据汇总在一起,以了解政策水平上的选择与树木环境的结果之间的联系。然后,我们将量化英国关键树种中自然和人类选择可以达到的适应速度,重点是与预测环境中适应性相关的特征以及对害虫和病原体的敏感性。我们将比较自然再生与种植对与树木相关的生物群落的发展的影响,尤其是真菌和昆虫媒介,并有可能介导风险。直接从实验工作中借鉴,我们将设计结合有关性状变异性数据的模型,并将评估如何在不同的组成,配置和不同的管理方案下使用树种内的内部适应性,以产生多样化和动态的树木,并具有内置的内置能力来跟踪环境变化,即使这种变化也不确定。我们将测试工具和策略,以最大程度地降低害虫和病原体的风险,尤其是那些与景观中的树木数量增加相关的风险,从我们的焦点物种及其相关社区之间的相互作用中学习。与利益相关者合作,我们将探索可以部署的社会和经济驱动因素,以实现景观的变化,从英国的历史环境政策及其结果中学习,以及欧洲类似系统中的关键案例研究。一个特别的重点将放在人们参与不确定性,活力和变化的概念上,研究整合科学和艺术的新方法,并围绕这些思想创作新作品。汇集了这个多样化和多学科的团队,我们将生产新的研究,指导,政策建议,基于艺术和科学的工具,以提高英国未来树木的韧性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parasites and Biological Invasions
寄生虫和生物入侵
- DOI:10.1079/9781789248135.0005
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Barwell L
- 通讯作者:Barwell L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Cavers其他文献
Stephen Cavers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Cavers', 18)}}的其他基金
Quantifying how host genotype and microbiome composition combine to influence susceptibility to plant disease.
量化宿主基因型和微生物组组成如何结合影响植物病害的易感性。
- 批准号:
BB/W020378/1 - 财政年份:2023
- 资助金额:
$ 127.74万 - 项目类别:
Research Grant
The Tree of Knowledge (ToK): communicating the complexity of forest resilience. 08832
知识树(ToK):传达森林恢复力的复杂性。
- 批准号:
NE/Y004116/1 - 财政年份:2023
- 资助金额:
$ 127.74万 - 项目类别:
Research Grant
Promoting resilience of UK tree species to novel pests and pathogens: ecological and evolutionary solutions
提高英国树种对新型害虫和病原体的抵抗力:生态和进化解决方案
- 批准号:
BB/L012243/1 - 财政年份:2014
- 资助金额:
$ 127.74万 - 项目类别:
Research Grant
Population genomics and evolution of adaptive traits in Pines
松树种群基因组学和适应性特征的进化
- 批准号:
NE/K012177/1 - 财政年份:2013
- 资助金额:
$ 127.74万 - 项目类别:
Research Grant
Genomics of Adaptation in European Pines (GAP)
欧洲松树适应基因组学 (GAP)
- 批准号:
NE/H003959/1 - 财政年份:2010
- 资助金额:
$ 127.74万 - 项目类别:
Research Grant
相似国自然基金
不确定环境下基于学习的非线性时滞系统自适应低阶控制方法
- 批准号:62373329
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数据流形学习的复杂卫星高精度高效率姿态确定方法研究
- 批准号:61903086
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
复杂工业过程不确定环境下的自适应鲁棒优化方法及其应用
- 批准号:61873092
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
不确定环境下柔性作业车间多目标调度研究
- 批准号:51705260
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
非一致目标跟踪不确定系统自适应学习控制的切换算法
- 批准号:61603296
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Learning to adapt to an uncertain future: linking genes, trees, people and processes for more resilient treescapes (newLEAF)
学习适应不确定的未来:将基因、树木、人类和过程联系起来,打造更具弹性的树景 (newLEAF)
- 批准号:
NE/V020080/1 - 财政年份:2021
- 资助金额:
$ 127.74万 - 项目类别:
Research Grant
Learning to adapt to an uncertain future: linking genes, trees, people and processes for more resilient treescapes (newLEAF)
学习适应不确定的未来:将基因、树木、人类和过程联系起来,打造更具弹性的树景 (newLEAF)
- 批准号:
NE/V019988/1 - 财政年份:2021
- 资助金额:
$ 127.74万 - 项目类别:
Research Grant
Learning to adapt to an uncertain future: linking genes, trees, people and processes for more resilient treescapes (newLEAF)
学习适应不确定的未来:将基因、树木、人类和过程联系起来,打造更具弹性的树景 (newLEAF)
- 批准号:
NE/V019953/1 - 财政年份:2021
- 资助金额:
$ 127.74万 - 项目类别:
Research Grant
Learning to adapt to an uncertain future: linking genes, trees, people and processes for more resilient treescapes (newLEAF)
学习适应不确定的未来:将基因、树木、人类和过程联系起来,打造更具弹性的树景 (newLEAF)
- 批准号:
NE/V019910/1 - 财政年份:2021
- 资助金额:
$ 127.74万 - 项目类别:
Research Grant
Learning to adapt to an uncertain future: linking genes, trees, people and processes for more resilient treescapes (newLEAF)
学习适应不确定的未来:将基因、树木、人类和过程联系起来,打造更具弹性的树景 (newLEAF)
- 批准号:
NE/V020005/1 - 财政年份:2021
- 资助金额:
$ 127.74万 - 项目类别:
Research Grant