Structure, Photosynthesis and Light In Canopy Environments (SPLICE)
树冠环境中的结构、光合作用和光 (SPLICE)
基本信息
- 批准号:NE/W006596/1
- 负责人:
- 金额:$ 81.76万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The SPLICE project (Structure, Photosynthesis and Light In Canopy Environments) seeks to improve our understanding of global photosynthesis and hence our ability to model climate change, by considering the way in which the three-dimensional structure of plants interacts with light and how this in turn impacts on the uptake of carbon. We will employ state-of-the-art techniques to measure the three dimensional structure and photosynthesis of forests and construct detailed computer simulations to create a virtual laboratory that we can use to improve simulations from climate models. The process of photosynthesis is fundamental to life on Earth. In this project we are concerned with its role in the terrestrial carbon cycle, which in turn is important for understanding climate change. The land surface absorbs around 25% of anthropogenic CO2 emissions and this proportion has remained remarkably constant despite increasing emissions. Whether or not this will continue is unknown. Earth System Models (ESMs), which are essentially climate models that include climate-relevant biological process, include the uptake of carbon by plants via photosynthesis so that they can model (a) the influence of this process on atmospheric carbon dioxide concentrations and (b) the impact of climate change on global vegetation. There have been significant advances made in the modelling of photosynthesis inside these models in recent decades, for example the interaction with the nitrogen cycle, but they still include some very simple assumptions. We argue that chief amongst these is the way in which the three dimensional structure of vegetation is represented - something that has not been improved for nearly four decades.The equations in ESMs that govern the interception of light by plants, which in turn drives photosynthesis, make the simplifying assumption that leaves are randomly arranged in space, not clustered into tree crowns or around branches. This allows relevant equations in physics to be solved in such a way that results in computationally efficient computer code, but does not represent reality very closely. Recent research from the University of Reading has shown that the impact of including even a simple representation of these effects into an ESM can have large impacts on the global carbon cycle. In particular we showed an enhancement in the modelled estimates of global photosynthesis of 5 billion tonnes of carbon per year, or more than half of CO2 released from burning fossil fuels. Most of this occurs in the tropics, an area of the Earth likely to be especially vulnerable to the impacts of climate change.SPLICE will measure the 3D structure of 26 forests around the world using a combination of terrestrial Lidar scanning and airborne Lidar surveys. Lidar uses scattered laser light to infer structure of forests and information from it can be used to reconstruct a branch-by-branch simulation of the forest. We will take these data and build detailed 3D models of the forest light environment and resulting photosynthesis. The photosynthetic flux will be measured using a variety of techniques, including observations of solar induced fluorescence (SIF) from drones. These observations will be used to test our 3D models. SIF occurs as part of photosynthesis and although it has been known about for some time the technology to observe it remotely is relatively new. It provides a close proxy for the amount of carbon being taken up by photosynthesis.Our final step will be to use the detailed 3D models to develop a modified version of the computer codes used in ESMs to represent the interaction of light with vegetation canopies. These modified codes will be used in the land surface component of UKESM - the UK's new Earth System Model - to assess the impact of these changes globally and the magnitude of their impact on the carbon cycle and hence climate change.
Splice项目(树冠环境中的结构、光合作用和光)旨在通过考虑植物的三维结构与光相互作用的方式以及这反过来如何影响碳的吸收,来提高我们对全球光合作用的理解,从而提高我们模拟气候变化的能力。我们将使用最先进的技术来测量森林的三维结构和光合作用,并构建详细的计算机模拟来创建一个虚拟实验室,我们可以用它来改进气候模型的模拟。光合作用的过程是地球上生命的基础。在这个项目中,我们关注的是它在陆地碳循环中的作用,这反过来对理解气候变化也很重要。陆地表面吸收了大约25%的人为二氧化碳排放,尽管排放量增加,但这一比例保持了显著的稳定。这种情况是否会继续下去还不得而知。地球系统模型(ESM)本质上是气候模型,包括与气候相关的生物过程,包括植物通过光合作用吸收碳,以便能够模拟(A)该过程对大气二氧化碳浓度的影响和(B)气候变化对全球植被的影响。近几十年来,这些模型在光合作用的模拟方面取得了重大进展,例如与氮循环的相互作用,但它们仍然包括一些非常简单的假设。我们认为,其中最主要的是植被三维结构的表现方式--这一点近40年来一直没有得到改善。ESMS中管理植物截获光线的方程,反过来又驱动光合作用,做出了简化的假设,即叶子在空间中随机排列,而不是聚集到树冠或树枝周围。这使得物理学中的相关方程可以以一种产生计算效率高的计算机代码的方式来求解,但不能很好地代表现实。雷丁大学最近的研究表明,即使是将这些影响的简单表示纳入ESM,也可能对全球碳循环产生重大影响。特别是,我们显示了对全球光合作用的模型估计的增强,即每年50亿吨碳,或燃烧化石燃料释放的二氧化碳的一半以上。其中大部分发生在热带地区,这一地区很可能特别容易受到气候变化的影响。SPLICE将结合地面激光雷达扫描和机载激光雷达测量来测量全球26个森林的3D结构。激光雷达使用散射激光来推断森林的结构,从中获得的信息可以用来重建森林的逐个树枝模拟。我们将利用这些数据,建立森林光环境和由此产生的光合作用的详细3D模型。光合作用通量将使用各种技术来测量,包括观测无人机的太阳诱导荧光(SIF)。这些观测将被用来测试我们的3D模型。SIF是光合作用的一部分,虽然人们知道它已经有一段时间了,但远程观测它的技术相对较新。它提供了光合作用吸收碳量的密切指标。我们的最后一步将是使用详细的3D模型来开发用于ESM的计算机代码的修改版本,以表示光与植被树冠的相互作用。这些修改后的代码将用于英国新的地球系统模型UKESM的陆地表面部分,以评估这些变化在全球范围内的影响,以及它们对碳循环和气候变化的影响程度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tristan Quaife其他文献
Fast matrix treatment of 3D radiative transfer in vegetation canopies: SPARTACUS-Vegetation 1.0
植被冠层 3D 辐射传输的快速矩阵处理:SPARTACUS-Vegetation 1.0
- DOI:
10.5194/gmd-2017-208 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Robin J. Hogan;Tristan Quaife;Renato Braghiere - 通讯作者:
Renato Braghiere
Calibrating primary crop parameters to capture undersown species impacts
校准主要作物参数以获取套种物种的影响
- DOI:
10.1016/j.eja.2025.127676 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:5.500
- 作者:
Quentin Bell;Stephanie Gerin;Natalie Douglas;Tristan Quaife;Jari Liski;Toni Viskari - 通讯作者:
Toni Viskari
The influence of 3D canopy structure on modelled photosynthesis
三维冠层结构对模拟光合作用的影响
- DOI:
10.1016/j.agrformet.2025.110437 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Megan A. Stretton;Tristan Quaife;Phil Wilkes;Mat Disney - 通讯作者:
Mat Disney
Exploring a hybrid ensemble–variational data assimilation technique (4DEnVar) with a simple ecosystem carbon model
探索一种混合集合-变分数据同化技术(4DEnVar)与一个简单的生态系统碳模型相结合
- DOI:
10.1016/j.envsoft.2025.106361 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:4.600
- 作者:
Natalie Douglas;Tristan Quaife;Ross Bannister - 通讯作者:
Ross Bannister
Tristan Quaife的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tristan Quaife', 18)}}的其他基金
Enhancing Resilience to Agricultural Drought in Africa through Improved Communication of Seasonal Forecasts (ERADACS)
通过改进季节性预报通信 (ERADACS) 增强非洲农业干旱的抵御能力
- 批准号:
NE/P015352/1 - 财政年份:2017
- 资助金额:
$ 81.76万 - 项目类别:
Research Grant
相似海外基金
Elucidation of the mechanisms for light-induced water-splitting and light energy utilization in photosynthesis
阐明光诱导水分解和光合作用中光能利用的机制
- 批准号:
22H04916 - 财政年份:2022
- 资助金额:
$ 81.76万 - 项目类别:
Grant-in-Aid for Specially Promoted Research
Development of artificial photosynthesis system based on hybrid system with visible-light-driven semiconductor photocatalyst and bio-catalyst
基于可见光驱动半导体光触媒和生物触媒混合系统的人工光合作用系统的研制
- 批准号:
21K05245 - 财政年份:2021
- 资助金额:
$ 81.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
How do plants adjust their photosynthesis in response to fluctuating light environments in future climate
植物如何调整光合作用以应对未来气候中波动的光环境
- 批准号:
21H02171 - 财政年份:2021
- 资助金额:
$ 81.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Role of far-red light in photosynthesis: A new mechanism of photosynthesis regulation via driving photosystem I
远红光在光合作用中的作用:驱动光系统I调节光合作用的新机制
- 批准号:
21K15118 - 财政年份:2021
- 资助金额:
$ 81.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Verification of mutual regulation hypothesis for electron flow and light harvesting system in photosynthesis
光合作用中电子流和光捕获系统相互调节假说的验证
- 批准号:
21K06217 - 财政年份:2021
- 资助金额:
$ 81.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular adaptation of photosynthesis powered by long-wavelength light
长波长光驱动的光合作用的分子适应
- 批准号:
DP210102187 - 财政年份:2021
- 资助金额:
$ 81.76万 - 项目类别:
Discovery Projects
Development of light-driven electron transport hydrogel for artificial photosynthesis
用于人工光合作用的光驱动电子传输水凝胶的开发
- 批准号:
20K15296 - 财政年份:2020
- 资助金额:
$ 81.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study on a resistibility mechanism - Mehler reaction - of photosynthesis against light stress in conifer
针叶树光合作用抵抗光胁迫机制——梅勒反应的研究
- 批准号:
19K06148 - 财政年份:2019
- 资助金额:
$ 81.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimising the light recipe for maximum photosynthesis, yield and quality in strawberry (primarily via LED technology)
优化光照配方,以最大限度地提高草莓的光合作用、产量和质量(主要通过 LED 技术)
- 批准号:
2215763 - 财政年份:2019
- 资助金额:
$ 81.76万 - 项目类别:
Studentship
Reproduction of the evolutionary process of photosynthesis utilizing near infrared light toward astrobiology
利用近红外光在天体生物学中再现光合作用的进化过程
- 批准号:
19H02018 - 财政年份:2019
- 资助金额:
$ 81.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)