Rolling Grant, Nuclear Physics Group, Glasgow Univ.

滚动格兰特,核物理小组,格拉斯哥大学。

基本信息

  • 批准号:
    ST/F012225/1
  • 负责人:
  • 金额:
    $ 232.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

The research programme of the Glasgow Nuclear Physics Group focuses on the study of the strong interaction. As one of the four fundamental forces in nature, the strong force is responsible for the formation and stability of atomic nuclei. At an even more fundamental level it also is the interaction that forms hadrons from quarks and gluons and is therefore responsible for most of the observable mass in the universe. Quantum Chromodynamics (QCD) is widely accepted as the fundamental theory describing the strong interaction; a recent Nobel Prize (2004, Gross, Politzer, Wilczek) was awarded for developing this theory. QCD has some features that make it very different from the theories of the electromagnetic and weak interactions. Only very high energy particle physics processes can easily be calculated pertubatively, a feature known as asymptotic freedom At lower energies, effective field theories incorporating some of the fundamental symmetries of QCD, e.g. chiral symmetry, can be applied. In addition, models such as the quark model have been developed, which describes strongly interacting particles as either three-quark or quark-antiquark systems. In our research we use scattering experiments to investigate the structure of nuclei and nucleons as well as spectroscopic methods for nucleon resonances and hadrons. Both approaches complement each other. We carry our experiments out at leading accelerator facilities in Europe and the US: MAX-lab in Lund, Sweden; MAMI in Mainz, Germany; Jefferson Lab in Newport News, USA; DESY in Hamburg, Germany and FAIR in Darmstadt, Germany. In these experiments we use (often polarised) beams of electrons, photons and also (in the future) anti-protons. Our research is organised into four programmes or themes: - Short-range Nuclear Structure We want to understand how the constituents of atomic nuclei, protons and neutrons (collectively known as nucleons), interact with each other to give rise to a wide range of phenomena. In particular we plan to investigate, what happens when nucleons pass very close to each other in collisions within a nucleus, the strength of interactions involving 3 nucleons and how the nuclear medium affects particles that are created within it. - Nucleon Structure Knowing that nucleons are themselves composite objects made up of more fundamental entities (quarks and gluons), we need to establish the distribution of matter within them. Form factors and parton distribution functions are used to describe the structure of nucleons. In recent years the theoretical framework of Generalised Parton Distributions (GPDs) has been developed that ties the description of nucleon structure systematically together. Once measured, GPDs will give us a 3-dimensional picture of the nucleon as well as a way to access the total angular momentum of quarks inside a nucleon. - Nucleon Resonance Spectroscopy As composite objects, nucleons can be excited to higher mass states. Whilst the quark model describes a great deal of the excitation spectrum, several predictions must be confirmed to clarify which variant of the quark model most accurately describes reality. Hunting for predicted states is a very difficult task, and will involve, amongst other techniques, the use of polarised high energy photons similar to the way in which optical polarisation can be employed to see greater detail. - New Forms of Hadronic Matter The observation of states beyond the quark model is of fundamental importance in answering the question of why quarks and gluons have never been observed in isolation, even though there is compelling evidence that they must exist. This feature, known as 'confinement', is unique to the strong interaction, and is not observed in any of the other fundamental forces of nature. We use methods of hadron spectroscopy to search for so-called glueballs and exotic hybrid mesons.
格拉斯哥核物理小组的研究计划侧重于强相互作用的研究。作为自然界四种基本力之一,强相互作用决定着原子核的形成和稳定。在更基本的层面上,它也是从夸克和胶子形成强子的相互作用,因此是宇宙中大部分可观测质量的原因。量子色动力学(QCD)被广泛接受为描述强相互作用的基本理论;最近的诺贝尔奖(2004年,格罗斯,波利策,威尔切克)被授予发展这个理论。量子色动力学的一些特性使它与电磁相互作用和弱相互作用理论有很大的不同。只有非常高能量的粒子物理过程才能很容易地微扰计算,这是一个被称为渐近自由的特征。在较低的能量下,可以应用包含QCD的一些基本对称性(例如手征对称性)的有效场论。此外,夸克模型等模型已经发展出来,它将强相互作用的粒子描述为三夸克或夸克-反夸克系统。在我们的研究中,我们使用散射实验来研究核和核子的结构,以及核子共振和强子的光谱方法。这两种方法是相辅相成的。我们在欧洲和美国领先的加速器设施进行实验:瑞典隆德的MAX实验室;德国美因茨的MAMI;美国纽波特纽斯的杰斐逊实验室;德国汉堡的DESY和德国达姆施塔特的FAIR。在这些实验中,我们使用(通常是极化的)电子束、光子以及(将来的)反质子。我们的研究分为四个方案或主题:-短程核结构我们希望了解原子核,质子和中子(统称为核子)的成分如何相互作用,产生广泛的现象。特别是,我们计划调查,当核子通过非常接近彼此在核内碰撞,涉及3个核子的相互作用的强度,以及核介质如何影响在其中创建的粒子时会发生什么。-核子结构知道核子本身是由更基本的实体(夸克和胶子)组成的复合对象,我们需要建立它们内部的物质分布。形状因子和部分子分布函数被用来描述核子的结构。近年来,广义部分子分布(GPD)的理论框架已经发展起来,将核子结构的描述系统地联系在一起。一旦被测量,GPD将给我们一个核子的三维图像,以及一种获得核子内夸克的总角动量的方法。- 核子共振光谱学作为复合物体,核子可以被激发到更高的质量状态。虽然夸克模型描述了大量的激发光谱,但必须确认几个预测,以澄清夸克模型的哪一种变体最准确地描述现实。寻找预测的状态是一项非常困难的任务,除了其他技术外,还涉及使用偏振的高能光子,类似于可以采用光学偏振来查看更多细节的方式。- 强子物质的新形式夸克模型之外的态的观测对于回答为什么夸克和胶子从未被孤立地观测到的问题具有根本的重要性,即使有令人信服的证据表明它们必须存在。这种被称为“限制”的特征是强相互作用所特有的,在自然界的任何其他基本力中都没有观察到。我们使用强子谱的方法来寻找所谓的胶球和奇异的混合介子。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Ireland其他文献

Classification of Movement of People with Parkinsons Disease Using Wearable Inertial Movement Units and Machine Learning
使用可穿戴惯性运动单元和机器学习对帕金森病患者的运动进行分类
REValueD: Regularised Ensemble Value-Decomposition for Factorisable Markov Decision Processes
REValueD:可分解马尔可夫决策过程的正则集成价值分解
  • DOI:
    10.48550/arxiv.2401.08850
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Ireland;Giovanni Montana
  • 通讯作者:
    Giovanni Montana
Year in Review
Level-3 Trigger for CLAS12 with Artificial Intelligence
人工智能 CLAS12 的 3 级触发器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Tyson;G. Gavalian;Bryan McKinnon;David Ireland
  • 通讯作者:
    David Ireland
Parallel-Forms Reliability and Clinical Utility of an Application Version of the Activity Card Sort Australia (18–64)
澳大利亚活动卡片分类应用程序版本的并行形式可靠性和临床实用性 (18–64)
  • DOI:
    10.5014/ajot.2018.028688
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Gustafsson;Aleysha K Martin;Liane Buijsman;Soemitro Poerbodipoero;J. Liddle;David Ireland
  • 通讯作者:
    David Ireland

David Ireland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Ireland', 18)}}的其他基金

UofG Nuclear Physics Consolidated Grant
乔治城大学核物理综合拨款
  • 批准号:
    ST/Y000315/1
  • 财政年份:
    2024
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Nuclear Physics Consolidated Grant
核物理综合拨款
  • 批准号:
    ST/V00106X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Nuclear Physics Equipment Grant 2018
2018年核物理设备补助金
  • 批准号:
    ST/S005722/1
  • 财政年份:
    2019
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Nuclear Physics Consolidated Grant
核物理综合拨款
  • 批准号:
    ST/P004458/1
  • 财政年份:
    2017
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Nuclear Physics Equipment 2015
2015年核物理设备
  • 批准号:
    ST/N002598/1
  • 财政年份:
    2015
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Jefferson Laboratory Upgrade Project
杰斐逊实验室升级项目
  • 批准号:
    ST/M001555/1
  • 财政年份:
    2015
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Nuclear Physics Equipment
核物理设备
  • 批准号:
    ST/L005700/1
  • 财政年份:
    2014
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Nuclear Physics Consolidated Grant
核物理综合拨款
  • 批准号:
    ST/L005719/1
  • 财政年份:
    2014
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Consolidated Grant
综合拨款
  • 批准号:
    ST/J000175/1
  • 财政年份:
    2011
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
JLAB Project Coordination
JLAB 项目协调
  • 批准号:
    JLAB
  • 财政年份:
    2010
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Intramural

相似海外基金

Nuclear Physics Consolidated Grant
核物理综合拨款
  • 批准号:
    ST/Y000277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
UofG Nuclear Physics Consolidated Grant
乔治城大学核物理综合拨款
  • 批准号:
    ST/Y000315/1
  • 财政年份:
    2024
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Edinburgh Nuclear Physics Consolidated Grant 2024-27
爱丁堡核物理综合赠款 2024-27
  • 批准号:
    ST/Y000293/1
  • 财政年份:
    2024
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Nuclear Physics Consolidated Grant 2023
核物理综合补助金 2023
  • 批准号:
    ST/Y000242/1
  • 财政年份:
    2024
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Birmingham Nuclear Physics Consolidated Grant 2023
伯明翰核物理综合赠款 2023
  • 批准号:
    ST/Y000331/1
  • 财政年份:
    2024
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Nuclear Physics Consolidated Grant 2023
核物理综合补助金 2023
  • 批准号:
    ST/Y000382/1
  • 财政年份:
    2024
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Birmingham Nuclear Physics Consolidated Grant 2023
伯明翰核物理综合赠款 2023
  • 批准号:
    ST/Y00034X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Birmingham-SHU Nuclear Physics Consolidated Grant Application 2020
伯明翰-SHU 核物理综合资助申请 2020
  • 批准号:
    ST/V001086/1
  • 财政年份:
    2021
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Nuclear Physics Consolidated Grant
核物理综合拨款
  • 批准号:
    ST/V00106X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
Manchester Nuclear Physics Consolidated Grant 2020
曼彻斯特核物理综合补助金 2020
  • 批准号:
    ST/V001116/1
  • 财政年份:
    2021
  • 资助金额:
    $ 232.79万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了