Consolidated Grant
综合拨款
基本信息
- 批准号:ST/J000175/1
- 负责人:
- 金额:$ 246.53万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research programme of the Glasgow Nuclear Physics Group focuses on the study of the strong interaction. As one of the four fundamental forces in nature, the strong force is responsible for the formation and stability of atomic nuclei. At an even more fundamental level it also is the interaction that forms hadrons from quarks and gluons and is therefore responsible for most of the visible mass in the universe. Quantum Chromodynamics (QCD) is widely accepted as the fundamental theory describing the strong interaction; a recent Nobel Prize (2004, Gross, Politzer, Wilczek) was awarded for developing this theory. QCD has some features that make it very different from the theories of the electromagnetic and weak interactions. Only very high energy particle physics processes can easily be calculated pertubatively, a feature known as asymptotic freedom. At lower energies, effective field theories incorporating some of the fundamental symmetries of QCD, e.g. chiral symmetry, can be applied. In addition, models such as the quark model have been developed, which describes strongly interacting particles as either three-quark or quark-antiquark systems. In our research we use scattering experiments to investigate the structure of nuclei and nucleons as well as the spectrum of hadrons. We carry our experiments out at leading accelerator facilities in Europe and the US: Jefferson Lab in Newport News, USA; MAX-lab in Lund, Sweden; MAMI in Mainz, Germany and DESY in Hamburg, Germany. In these experiments we use (often polarised) beams of electrons, positrons and photons. Our research is organised into three themes: - Nucleon Structure Knowing that nucleons are made up of more fundamental entities (quarks and gluons), we need to establish the distribution of matter within them. Form factors and parton distribution functions are used to describe the structure of nucleons. In recent years the theoretical framework of Generalised Parton Distributions (GPDs) has been developed that ties the description of nucleon structure systematically together. Once measured, GPDs will give us a 3-dimensional picture of the nucleon as well as a way to access the total angular momentum of quarks inside a nucleon. - Hadron Spectroscopy As composite objects, nucleons can be excited to higher mass states. Whilst the quark model describes a great deal of the excitation spectrum, several predictions must be confirmed to clarify which variant of the quark model most accurately describes reality. Hunting for predicted states is a very difficult task, and involves, amongst other techniques, the use of polarised high energy photons similar to the way in which optical polarisation can be employed to see greater detail. The observation of states beyond the quark model is of fundamental importance in answering the question of why quarks and gluons have never been observed in isolation, even though there is compelling evidence that they must exist. This feature, known as 'confinement', is unique to the strong interaction, and is not observed in any of the other fundamental forces of nature. This can be studied by searching for so-called glueballs and exotic hybrid mesons. - Short-range Nuclear Structure We want to understand how the constituents of atomic nuclei, protons and neutrons (collectively known as nucleons), interact with each other to give rise to a wide range of phenomena. In particular we plan to investigate, what happens when nucleons pass very close to each other in collisions within a nucleus, the strength of interactions involving 3 nucleons and how the nuclear medium affects particles that are created within it. We are also studying few-body nuclei, which can be used to test predictions of Chiral effective field theories.
格拉斯哥核物理小组的研究计划着重于对强烈相互作用的研究。作为自然界中的四个基本力之一,强力负责原子核的形成和稳定性。从更加基本的角度来看,它也是形成夸克和胶子的辐射子的相互作用,因此是宇宙中大多数可见质量的原因。量子染色体动力学(QCD)被广泛接受为描述强相互作用的基本理论。最近获得的诺贝尔奖(2004年,诺贝尔,威尔塞克)因发展这一理论而被授予。 QCD具有某些特征,使其与电磁和弱相互作用的理论截然不同。只有非常高的能量粒子物理过程才能轻松地计算出一种称为渐近自由的特征。在较低的能量下,有效的野外理论结合了QCD的某些基本对称性,例如手性对称性,可以应用。此外,已经开发了诸如夸克模型之类的模型,该模型描述了强烈相互作用的粒子是三夸克或夸克 - 易药系统。在我们的研究中,我们使用散射实验来研究核和核子的结构以及哈隆的光谱。我们在欧洲和美国领先的加速器设施进行实验:美国纽波特新闻的杰斐逊实验室;瑞典隆德的最大lab; Mami在德国的Mainz和德国汉堡的Desy。在这些实验中,我们使用(通常是极化的)电子,正上子和光子的光束。我们的研究组织为三个主题: - 核子结构知道核子是由更基本的实体(夸克和胶子)组成的,我们需要在其中建立物质的分布。形式因素和部分分布函数用于描述核子的结构。近年来,已经开发了将核子结构的描述系统地相关联的广义Parton分布(GPD)的理论框架。一旦测量,GPD将为我们提供核子的三维图片,以及一种进入核子内部夸克的总角动量的方法。 - 强子光谱作为复合物体,核子可以激发到更高的质量状态。尽管夸克模型描述了大量的激发光谱,但必须确认一些预测,以阐明夸克模型的哪种变体最准确地描述了现实。追捕预测状态是一项非常艰巨的任务,除其他技术外,使用偏振高能光子的使用类似于可以使用光学极化的方式来查看详细信息。对夸克模型以外的国家的观察对于回答为什么从未孤立地观察到的夸克和脾气的问题至关重要,即使有令人信服的证据必须存在。此特征称为“限制”,是强烈相互作用所独有的,并且在自然的其他任何基本力量中都没有观察到。可以通过搜索所谓的胶球和异国混合介子来研究。 - 短距离核结构,我们想了解原子核,质子和中子(统称为核子)的组成部分如何相互作用,以引起广泛的现象。特别是我们计划调查,当核子在核内碰撞中彼此之间非常接近时会发生什么,涉及3个核子的相互作用的强度以及核培养基如何影响其内部产生的颗粒。我们还研究了几个体核,可用于测试手性有效野外理论的预测。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measurement of the ? ? p 0 e + e - and ? ? e + e - ? Dalitz decays with the A2 setup at the Mainz Microtron
的测量?
- DOI:10.1103/physrevc.95.035208
- 发表时间:2017
- 期刊:
- 影响因子:3.1
- 作者:Adlarson P
- 通讯作者:Adlarson P
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
- DOI:10.1103/physrevlett.114.062003
- 发表时间:2015-02-10
- 期刊:
- 影响因子:8.6
- 作者:Adikaram, D.;Rimal, D.;Zonta, I.
- 通讯作者:Zonta, I.
Technical Design Report for the: PANDA Micro Vertex Detector
PANDA 微型顶点探测器的技术设计报告
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:,;Others
- 通讯作者:Others
The upgraded photon tagging facility at the MAX IV Laboratory
- DOI:10.1016/j.nima.2013.02.040
- 发表时间:2013-07
- 期刊:
- 影响因子:1.4
- 作者:J. Adler;M. Boland;J. Brudvik;K. Fissum;K. Hansen;L. Isaksson;P. Lilja;L. Lindgren;M. Lundin;B. Nilsson;D. Pugachov;A. Sandell;B. Schröder;V. Avdeichikov;P. Golubev;B. Jakobsson;J. Annand;K. Livingston;R. Igarashi;L. Myers;A. Nathan;W. Briscoe;G. Feldman;M. Kovash;D. Branford;K. Föhl;P. Grabmayr;V. Takau;G. O'Rielly;D. Burdeynyi;V. Ganenko;V. Morochovskyi;G. Vashchenko
- 通讯作者:J. Adler;M. Boland;J. Brudvik;K. Fissum;K. Hansen;L. Isaksson;P. Lilja;L. Lindgren;M. Lundin;B. Nilsson;D. Pugachov;A. Sandell;B. Schröder;V. Avdeichikov;P. Golubev;B. Jakobsson;J. Annand;K. Livingston;R. Igarashi;L. Myers;A. Nathan;W. Briscoe;G. Feldman;M. Kovash;D. Branford;K. Föhl;P. Grabmayr;V. Takau;G. O'Rielly;D. Burdeynyi;V. Ganenko;V. Morochovskyi;G. Vashchenko
Measurement of the p 0 ? e + e - ? Dalitz decay at the Mainz Microtron
p 0 的测量?
- DOI:10.1103/physrevc.95.025202
- 发表时间:2017
- 期刊:
- 影响因子:3.1
- 作者:Adlarson P
- 通讯作者:Adlarson P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Ireland其他文献
Classification of Movement of People with Parkinsons Disease Using Wearable Inertial Movement Units and Machine Learning
使用可穿戴惯性运动单元和机器学习对帕金森病患者的运动进行分类
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
David Ireland;Ziwei Wang;Robyn M. Lamont;J. Liddle - 通讯作者:
J. Liddle
REValueD: Regularised Ensemble Value-Decomposition for Factorisable Markov Decision Processes
REValueD:可分解马尔可夫决策过程的正则集成价值分解
- DOI:
10.48550/arxiv.2401.08850 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
David Ireland;Giovanni Montana - 通讯作者:
Giovanni Montana
Year in Review
- DOI:
10.1097/nnd.0000000000000497 - 发表时间:
2000-01 - 期刊:
- 影响因子:6.7
- 作者:
David Ireland - 通讯作者:
David Ireland
Level-3 Trigger for CLAS12 with Artificial Intelligence
人工智能 CLAS12 的 3 级触发器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Richard Tyson;G. Gavalian;Bryan McKinnon;David Ireland - 通讯作者:
David Ireland
Parallel-Forms Reliability and Clinical Utility of an Application Version of the Activity Card Sort Australia (18–64)
澳大利亚活动卡片分类应用程序版本的并行形式可靠性和临床实用性 (18–64)
- DOI:
10.5014/ajot.2018.028688 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
L. Gustafsson;Aleysha K Martin;Liane Buijsman;Soemitro Poerbodipoero;J. Liddle;David Ireland - 通讯作者:
David Ireland
David Ireland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Ireland', 18)}}的其他基金
UofG Nuclear Physics Consolidated Grant
乔治城大学核物理综合拨款
- 批准号:
ST/Y000315/1 - 财政年份:2024
- 资助金额:
$ 246.53万 - 项目类别:
Research Grant
Nuclear Physics Consolidated Grant
核物理综合拨款
- 批准号:
ST/V00106X/1 - 财政年份:2021
- 资助金额:
$ 246.53万 - 项目类别:
Research Grant
Nuclear Physics Equipment Grant 2018
2018年核物理设备补助金
- 批准号:
ST/S005722/1 - 财政年份:2019
- 资助金额:
$ 246.53万 - 项目类别:
Research Grant
Nuclear Physics Consolidated Grant
核物理综合拨款
- 批准号:
ST/P004458/1 - 财政年份:2017
- 资助金额:
$ 246.53万 - 项目类别:
Research Grant
Nuclear Physics Equipment 2015
2015年核物理设备
- 批准号:
ST/N002598/1 - 财政年份:2015
- 资助金额:
$ 246.53万 - 项目类别:
Research Grant
Jefferson Laboratory Upgrade Project
杰斐逊实验室升级项目
- 批准号:
ST/M001555/1 - 财政年份:2015
- 资助金额:
$ 246.53万 - 项目类别:
Research Grant
Nuclear Physics Consolidated Grant
核物理综合拨款
- 批准号:
ST/L005719/1 - 财政年份:2014
- 资助金额:
$ 246.53万 - 项目类别:
Research Grant
Rolling Grant, Nuclear Physics Group, Glasgow Univ.
滚动格兰特,核物理小组,格拉斯哥大学。
- 批准号:
ST/F012225/1 - 财政年份:2009
- 资助金额:
$ 246.53万 - 项目类别:
Research Grant
相似国自然基金
权力何以授予:目标理论视角下领导授权行为的形成机制研究
- 批准号:71702005
- 批准年份:2017
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Nuclear Physics Consolidated Grant
核物理综合拨款
- 批准号:
ST/Y000277/1 - 财政年份:2024
- 资助金额:
$ 246.53万 - 项目类别:
Research Grant
UofG Nuclear Physics Consolidated Grant
乔治城大学核物理综合拨款
- 批准号:
ST/Y000315/1 - 财政年份:2024
- 资助金额:
$ 246.53万 - 项目类别:
Research Grant
A consolidated grant for Sheffield Astrophysics - Transfer to Royal Holloway
谢菲尔德天体物理学综合赠款 - 转学到皇家霍洛威学院
- 批准号:
ST/Z000521/1 - 财政年份:2024
- 资助金额:
$ 246.53万 - 项目类别:
Research Grant
Edinburgh Nuclear Physics Consolidated Grant 2024-27
爱丁堡核物理综合赠款 2024-27
- 批准号:
ST/Y000293/1 - 财政年份:2024
- 资助金额:
$ 246.53万 - 项目类别:
Research Grant