Particle Theory at the Tait Institute

泰特研究所的粒子理论

基本信息

  • 批准号:
    ST/J000310/1
  • 负责人:
  • 金额:
    $ 8.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

There are two types of fundamental forces in Nature: Those responsible for particle interactions at subatomic scales and those responsible for the large scale structure of the universe. The former is described by Quantum Field Theories (QFT) such as the Standard Model. Currently, our understanding of Nature at the most fundamental level is at the crossroads. Last year, the LHC at CERN collided protons at higher energies than ever before, and this year there should be sufficient collisions to begin to explore physics at the TeV scale. Nobody yet knows what these data will reveal. However, there are very good reasons to believe that something fundamentally new will eventually be discovered, which might transform our understanding of basic physics, making the next few years the most exciting time for a generation or more. The discoveries could be new types of particle, such as the Higgs boson, new kinds of symmetries such as supersymmetry, or indeed something even more dramatic such as extra dimensions or mini black holes. Our rolling programme of research in Particle Physics Theory is designed to be at the forefront of these new discoveries: indeed Peter Higgs himself is Emeritus Professor here. Specifically, we provide theoretical calculations, using pen and paper, and the most powerful supercomputers, of both the huge number of background processes to be seen at LHC due to known physics, and the tiny signals expected in various models of new physics, in order to discriminate between signal and background, and thus maximise the discovery potential of the LHC. In parallel, we will attempt to understand the more complete picture of all the forces of Nature that may begin to emerge. The fundamental force responsible for large scale structure is described Einstein's General Theory of Relativity (GR). During the last three decades, string theory has emerged as a conceptually rich theoretical framework reconciling both GR and QFT. The low-energy limit of String Theory is supergravity (SUGRA), a nontrivial extension of GR in which the universe is described by a spacetime with additional geometric data. Members of the group have pioneered approaches to deriving observable cosmological consequences of String Theory, to studying how the geometrical notions on which GR is predicated change at very small ('stringy') distance scales, and the systematic classification of SUGRA backgrounds. The group is also engaged in using these theories to improve calculations in existing field theories. In summary, our research will impinge on both theoretical and computational aspects relevant to probing the phenomenology of incoming LHC data, and will also encompass a wide range of topics in QFT and gravitational aspects of String Theory, impinging on cosmology, particle physics and on the very nature of String Theory itself.
自然界中有两种基本力:一种是在亚原子尺度上负责粒子相互作用的力,另一种是负责宇宙大尺度结构的力。前者由量子场论(QFT)如标准模型描述。目前,我们对自然最基本的理解正处于十字路口。去年,欧洲核子研究中心的大型强子对撞机以比以往更高的能量碰撞质子,今年应该有足够的碰撞开始探索TeV尺度的物理学。没有人知道这些数据会揭示什么。然而,我们有很好的理由相信,最终会发现一些全新的东西,这可能会改变我们对基础物理学的理解,使未来几年成为一代人或更多人最激动人心的时刻。这些发现可能是新类型的粒子,如希格斯玻色子,新的对称性,如超对称性,或者甚至更戏剧性的东西,如额外的维度或迷你黑洞。我们在粒子物理理论研究的滚动计划旨在成为这些新发现的最前沿:事实上,彼得·希格斯本人是这里的名誉教授。具体来说,我们提供理论计算,使用笔和纸,以及最强大的超级计算机,由于已知的物理学,在LHC中可以看到大量的背景过程,以及在各种新物理模型中预期的微小信号,以便区分信号和背景,从而最大限度地提高LHC的发现潜力。与此同时,我们将试图理解所有可能开始出现的自然力量的更完整的图景。爱因斯坦的广义相对论(GR)描述了大尺度结构的基本力。在过去的三十年里,弦理论已经成为一个概念丰富的理论框架,调和了GR和QFT。弦论的低能极限是超引力(SUGRA),这是GR的非平凡扩展,其中宇宙由具有额外几何数据的时空描述。该小组的成员开创了方法来推导弦理论的可观测宇宙学后果,研究GR预测的几何概念如何在非常小的(“弦”)距离尺度上变化,以及SUGRA背景的系统分类。该小组还致力于使用这些理论来改进现有场论的计算。总之,我们的研究将冲击理论和计算方面的相关探测传入LHC数据的现象,也将涵盖广泛的主题QFT和弦论的引力方面,冲击宇宙学,粒子物理学和弦论本身的性质。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum Black Holes, Elliptic Genera and Spectral Partition Functions
量子黑洞、椭圆体和谱配分函数
  • DOI:
    10.48550/arxiv.1308.2177
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bytsenko A
  • 通讯作者:
    Bytsenko A
N=2 quiver gauge theories on A-type ALE spaces
A 型 ALE 空间上的 N=2 箭袋规范理论
  • DOI:
    10.48550/arxiv.1410.2742
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bruzzo U
  • 通讯作者:
    Bruzzo U
Differential cohomology and locally covariant quantum field theory
  • DOI:
    10.1142/s0129055x17500039
  • 发表时间:
    2014-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Becker;Alexander Schenkel;R. Szabo
  • 通讯作者:
    C. Becker;Alexander Schenkel;R. Szabo
Nonassociative geometry in quasi-Hopf representation categories I: Bimodules and their internal homomorphisms
拟Hopf表示类别中的非关联几何I:双模及其内部同态
Renormalization and redundancy in 2d quantum field theories
  • DOI:
    10.1007/jhep02(2014)001
  • 发表时间:
    2014-02
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Nicolas Behr;A. Konechny
  • 通讯作者:
    Nicolas Behr;A. Konechny
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Joseph Szabo其他文献

Richard Joseph Szabo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Joseph Szabo', 18)}}的其他基金

Particle Theory at the Higgs Centre
希格斯中心的粒子理论
  • 批准号:
    ST/P000363/1
  • 财政年份:
    2017
  • 资助金额:
    $ 8.78万
  • 项目类别:
    Research Grant
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
  • 批准号:
    ST/L000334/1
  • 财政年份:
    2014
  • 资助金额:
    $ 8.78万
  • 项目类别:
    Research Grant
String Theory Scotland
苏格兰弦理论
  • 批准号:
    ST/G000514/1
  • 财政年份:
    2010
  • 资助金额:
    $ 8.78万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Problems in Ramsey theory
拉姆齐理论中的问题
  • 批准号:
    2582036
  • 财政年份:
    2025
  • 资助金额:
    $ 8.78万
  • 项目类别:
    Studentship
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 8.78万
  • 项目类别:
    Continuing Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
  • 批准号:
    2414424
  • 财政年份:
    2024
  • 资助金额:
    $ 8.78万
  • 项目类别:
    Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    $ 8.78万
  • 项目类别:
    Standard Grant
REU Site: Computational Number Theory
REU 网站:计算数论
  • 批准号:
    2349174
  • 财政年份:
    2024
  • 资助金额:
    $ 8.78万
  • 项目类别:
    Continuing Grant
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    $ 8.78万
  • 项目类别:
    Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
  • 批准号:
    2350128
  • 财政年份:
    2024
  • 资助金额:
    $ 8.78万
  • 项目类别:
    Standard Grant
Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    $ 8.78万
  • 项目类别:
    Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 8.78万
  • 项目类别:
    Continuing Grant
Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
  • 批准号:
    2401514
  • 财政年份:
    2024
  • 资助金额:
    $ 8.78万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了