Structure and dynamics of small planets and moons

小行星和卫星的结构和动力学

基本信息

  • 批准号:
    ST/K000934/1
  • 负责人:
  • 金额:
    $ 84.3万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The proposed research aims to understand the interior structure and evolution of smaller planetary bodies, both icy (e.g., the Jovian moons) and rocky (e.g., the planet Mercury).Icy moons:Orbiting the gas-giant planets are many icy moons, which vary in size from 10s of kilometres across to >2500 km, larger than the planet Mercury. The three largest icy moons are Ganymede and Callisto (orbiting Jupiter), and Titan (orbiting Saturn); they have similar radii and bulk densities, but have experienced radically different geological histories. Callisto appears not to have evolved at all, its interior is a near uniform mixture of rock and ice, and the surface geology is dominated by impact craters. Ganymede's metal, rock, and ice components have separated out to form an iron core, a rocky mantle, and a thick icy shell, which has rifted the crust and caused the eruption of liquid water - an icy equivalent to Earth's volcanic magma. Titan has also undergone internal segregation to form a dense core coated by a thick icy shell. Unlike Ganymede, Titan may still be active. The most remarkable discovery is that all of these large icy bodies have global oceans of liquid water beneath icy crusts 10-200 km thick. These oceans are possible niches for extraterrestrial life in the outer reaches of our solar system.To understand why icy bodies of otherwise similar size and composition have led such different lives, we must construct mathematical models of the internal structure and heat flow. This modelling relies upon knowledge of how the icy layer transports heat from the core to the surface. Under the high pressures in the interior of an icy body, water-ice exists in several different crystalline forms, each with very different thermo-physical properties. In addition, there are likely to be abundant water-rich hydrates of various molecules, such as ammonia, and many soluble sulfates. These compounds often have a smaller thermal conductivity than water ice; just as a thick winter quilt will keep you warm in bed, a low-thermal-conductivity planetary crust will keep the interior much warmer than it would be otherwise, allowing subsurface oceans to stay liquid throughout geological history. For most of ices and hydrates, the physical properties we need to construct accurate models are not known at relevant pressures and temperatures. In this project we will measure properties such as the thermal expansion, thermal conductivity and specific heat capacity, supporting our measurements with computer simulation. We shall then incorporate the results into our planetary models and thus investigate the internal structure and evolution of the icy moons.MercuryMercury is the target of two orbital missions, MESSENGER (current) and Bepi-Columbo (2019) both of which have instruments on board to study its internal structure, composition and magnetic field. Mercury is only slightly less dense than the Earth but is much smaller and therefore the material within its interior is not as strongly compressed. For Mercury to have such a high density, its core must be large (>40% by volume, <70% by mass) and iron-rich (~70% Fe, ~30% silicate). Mercury's small size also suggests it must have cooled more rapidly than the Earth and therefore will have a distinct chemistry and evolutionary history. The presence of a magnetic field suggests that Mercury has a molten region, although fast cooling means that this may be confined to a rather thin shell. As a result of these differences, it is possible that the dynamo that supports the magnetic field of Mercury differs substantially from the Earth's dynamo. Understanding Mercury's interior requires us to construct geophysical models of its internal structure and evolution. To do this we must know the physical properties of the materials that make up its interior; these can be obtained through calculations based on quantum mechanics for both solid and liquid iron alloys at high pressures and temperatures.
拟议中的研究旨在了解较小行星体的内部结构和演化,这些行星体都是冰冷的(例如,木星的卫星)和岩石(例如,冰卫星:围绕着气态巨行星运行的是许多冰卫星,其大小从10公里到2500公里不等,比水星大。三颗最大的冰卫星是木卫三和木卫四(绕木星运行),以及土卫六(绕土星运行);它们有相似的半径和体积密度,但经历了截然不同的地质历史。木卫四似乎根本没有进化,它的内部是一个近乎均匀的岩石和冰的混合物,表面地质主要是撞击坑。木卫三的金属、岩石和冰的成分已经分离出来,形成了一个铁核、一个岩石地幔和一个厚厚的冰壳,这使地壳裂开,导致液态水的喷发--一种相当于地球火山岩浆的冰。土卫六也经历了内部分离,形成了一个被厚厚的冰壳覆盖的致密核心。与木卫三不同,土卫六可能仍然活跃。最引人注目的发现是,所有这些大型冰体在10 - 200公里厚的冰壳下都有全球液态水海洋。这些海洋可能是太阳系外围的地外生命的栖息地,要理解为什么大小和成分相似的冰体会有如此不同的生命,我们必须构建内部结构和热流的数学模型。这种建模依赖于冰层如何将热量从核心传输到表面的知识。在冰体内部的高压下,水冰以几种不同的结晶形式存在,每种结晶形式都具有非常不同的热物理性质。此外,可能存在大量的各种分子的富含水的水合物,如氨和许多可溶性硫酸盐。这些化合物的热导率通常比水冰小;就像一床厚厚的冬季被子会让你在床上保持温暖一样,低热导率的行星地壳会让内部比其他情况下温暖得多,从而使地下海洋在整个地质历史中保持液态。对于大多数冰和水合物,我们需要建立精确的模型的物理性质是未知的,在相关的压力和温度。在这个项目中,我们将测量热膨胀,导热系数和比热容等性能,并通过计算机模拟来支持我们的测量。水星水星是两个轨道任务的目标,信使(当前)和Bepi-Columbo(2019),这两个任务都有仪器来研究其内部结构,组成和磁场。水星的密度只比地球稍小,但体积小得多,因此其内部的物质没有强烈的压缩。水星要有如此高的密度,它的核心必须是大的(体积大于40%,质量小于70%)和富铁的(约70%的铁,约30%的硅酸盐)。水星的小尺寸也表明它必须比地球更快地冷却,因此将有一个独特的化学和进化历史。磁场的存在表明水星有一个熔化的区域,尽管快速冷却意味着这可能局限于一个相当薄的壳。由于这些差异,支持水星磁场的发电机可能与地球的发电机有很大不同。了解水星的内部需要我们构建其内部结构和演化的地球物理模型。要做到这一点,我们必须知道组成其内部的材料的物理性质;这些可以通过基于量子力学的计算在高压和高温下获得固体和液体铁合金。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MgSO4·11H2O and MgCrO4·11H2O based on time-of-flight neutron single-crystal Laue data.
MgSO4·11H2O 和 MgCrO4·11H2O 基于飞行时间中子单晶劳厄数据。
P - V - T equation of state of synthetic mirabilite (Na 2 SO 4 ·10D 2 O) determined by powder neutron diffraction
粉末中子衍射测定合成芒硝(Na 2 SO 4 ·10D 2 O)的P-V-T状态方程
High-resolution neutron-diffraction measurements to 8 kbar
高达 8 kbar 的高分辨率中子衍射测量
  • DOI:
    10.1080/08957959.2017.1386183
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Bull C
  • 通讯作者:
    Bull C
Partitioning of Co2+ and Mn2+ into meridianiite (MgSO4·11H2O): Ternary solubility diagrams at 270 K; cation site distribution determined by single-crystal time-of-flight neutron diffraction and density functional theory
Co2 和 Mn2 分配成子午线石 (MgSO4·11H2O):270 K 时的三元溶解度图;
  • DOI:
    10.1016/j.fluid.2017.01.005
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Fortes A
  • 通讯作者:
    Fortes A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Wood其他文献

Gap Localization of TE-Modes by arbitrarily weak defects - multiband case
任意弱缺陷对 TE 模式的间隙定位 - 多频带情况
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian Malcolm Brown;V. Hoang;M. Plum;M. Radosz;Ian Wood
  • 通讯作者:
    Ian Wood
Towards a Crowd-Sourced WordNet for Colloquial English
面向口语英语的众包 WordNet
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ian Wood;John P. McCrae;Amanda Hicks
  • 通讯作者:
    Amanda Hicks
Spectrum of the Maxwell Equations for a Flat Interface Between Homogeneous Dispersive Media
  • DOI:
    10.1007/s00220-024-05154-9
  • 发表时间:
    2024-12-09
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Malcolm Brown;Tomáš Dohnal;Michael Plum;Ian Wood
  • 通讯作者:
    Ian Wood
On the spectrum of waveguides in planar photonic bandgap structures
平面光子带隙结构中波导的光谱
emInSpectra/em – A platform for identifying emerging chemical threats
emInSpectra/em - 一个用于识别新兴化学威胁的平台
  • DOI:
    10.1016/j.jhazmat.2023.131486
  • 发表时间:
    2023-08-05
  • 期刊:
  • 影响因子:
    11.300
  • 作者:
    Mathieu Feraud;Jake W. O’Brien;Saer Samanipour;Pradeep Dewapriya;Denice van Herwerden;Sarit Kaserzon;Ian Wood;Cassandra Rauert;Kevin V. Thomas
  • 通讯作者:
    Kevin V. Thomas

Ian Wood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Wood', 18)}}的其他基金

International Institutional Awards Tranche 1 Leeds
国际机构奖第一期利兹
  • 批准号:
    BB/Y514160/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.3万
  • 项目类别:
    Research Grant
International Institutional Awards Tranche 2 Leeds
国际机构奖第二期利兹
  • 批准号:
    BB/Z514597/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.3万
  • 项目类别:
    Research Grant
The use and misuse of the barbarian invasions, 1732-2002
对野蛮人入侵的利用和误用,1732-2002
  • 批准号:
    AH/G007217/1
  • 财政年份:
    2009
  • 资助金额:
    $ 84.3万
  • 项目类别:
    Research Grant

相似国自然基金

发展基因编码的荧光探针揭示趋化因子CXCL10的时空动态及其调控机制
  • 批准号:
    32371150
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
磁性薄膜和磁性纳米结构中的自旋动力学研究
  • 批准号:
    11174131
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
星系结构基本单元星团的研究
  • 批准号:
    11043006
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
星系恒星与气体的动力学演化
  • 批准号:
    11073025
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
在我们的门前发掘化石——利用中国即将开展的巡天来研究银河系的演化
  • 批准号:
    11043005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
物体运动对流场扰动的数学模型研究
  • 批准号:
    51072241
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
弦场论及Tachyon动力学
  • 批准号:
    10705008
  • 批准年份:
    2007
  • 资助金额:
    15.0 万元
  • 项目类别:
    青年科学基金项目
微分遍历理论和廖山涛的一些方法的应用
  • 批准号:
    10671006
  • 批准年份:
    2006
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Structure and function of Transient Receptor Potential Channels
瞬时感受器电位通道的结构和功能
  • 批准号:
    10583880
  • 财政年份:
    2023
  • 资助金额:
    $ 84.3万
  • 项目类别:
Understanding how membrane composition directs membrane protein structure and function
了解膜成分如何指导膜蛋白结构和功能
  • 批准号:
    10630518
  • 财政年份:
    2023
  • 资助金额:
    $ 84.3万
  • 项目类别:
Resource for Structure-based Computational Drug Discovery and Design (RSD3)
基于结构的计算药物发现和设计资源 (RSD3)
  • 批准号:
    10707044
  • 财政年份:
    2022
  • 资助金额:
    $ 84.3万
  • 项目类别:
Resource for Structure-based Computational Drug Discovery and Design (RSD3)
基于结构的计算药物发现和设计资源 (RSD3)
  • 批准号:
    10431697
  • 财政年份:
    2022
  • 资助金额:
    $ 84.3万
  • 项目类别:
It's a tug of war: structure, consequences, and inhibition of CXCR4 and ACKR3 responses to lymphocyte chemoattractant CXCL12
这是一场拉锯战:CXCR4 和 ACKR3 对淋巴细胞趋化剂 CXCL12 反应的结构、后果和抑制
  • 批准号:
    10393668
  • 财政年份:
    2021
  • 资助金额:
    $ 84.3万
  • 项目类别:
Low-complexity domain protein molecular structure, conformational dynamics, and inter-protein interactions in human health and disease
人类健康和疾病中的低复杂性域蛋白质分子结构、构象动力学和蛋白质间相互作用
  • 批准号:
    10488197
  • 财政年份:
    2021
  • 资助金额:
    $ 84.3万
  • 项目类别:
Structure, function, and modulation of claudin cation channels in the GI tract
胃肠道密蛋白阳离子通道的结构、功能和调节
  • 批准号:
    10346465
  • 财政年份:
    2021
  • 资助金额:
    $ 84.3万
  • 项目类别:
Biomolecular Structure and Dynamics: Equipment Supplement for Zeiss 880 Airyscan Upgrade
生物分子结构和动力学:Zeiss 880 Airyscan 升级的设备补充
  • 批准号:
    10580417
  • 财政年份:
    2021
  • 资助金额:
    $ 84.3万
  • 项目类别:
Impact of ALS-linked mutations on the structure, dynamics and function of profilin-1
ALS 相关突变对 profilin-1 结构、动力学和功能的影响
  • 批准号:
    10323045
  • 财政年份:
    2021
  • 资助金额:
    $ 84.3万
  • 项目类别:
Biomolecular Structure and Dynamics
生物分子结构与动力学
  • 批准号:
    10684911
  • 财政年份:
    2021
  • 资助金额:
    $ 84.3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了