Edinburgh Nuclear Physics Group Consolidated Grant Proposal

爱丁堡核物理小组综合赠款提案

基本信息

  • 批准号:
    ST/L005824/1
  • 负责人:
  • 金额:
    $ 129.02万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The Greeks used to say matter was indivisible. This notion took a beating when Rutherford and co-workers showed that elements could be transformed by nuclear reactions. For a while it was thought that all the elements were produced in the big bang. Scientists such as Bethe and Hoyle showed in fact that nearly all the elements are produced in nuclear reactions in stars, which also for example make our sun shine. We are still seeking to understand the means by which these elements are produced and how stars evolve during their lifetime. This problem is being addressed through new detailed observations of stellar chemical abundances in the cosmos with telescopes, and here on earth, by trying to re-create the reactions occurring in stars. Elements can be produced by nuclear reactions in highly explosive, hot dense environments such as found in supernovae explosions, with the material subsequently thrown out into the cosmos, and eventually fetching up in locations such as our sun or the interstellar medium. In explosive environments it is the reactions and properties of unstable nuclei that are critical for understanding element production and energy generation in these processes. One can make an analogy with a river in full flood bursting its banks and then flowing in completely different directions: normally life is quiescent and stable, but it is often in these violent episodes that permanent imprints remain. New generation accelerator facilities are able to produce an increasingly large number of the key radioactive nuclear species involved in these explosive processes. So we can now study the reactions occurring in the stars and the subsequent decay paths of nuclei that end up in the stable isotopes we see around us. The elemental abundances of these stable isotopes provide coded information on their often violent history. This new information is required to discover the nature of the explosive environments in which such elements were first formed. In the longer quiescent phase of stars, their evolution is controlled by nuclear reactions occurring at much lower temperatures and densities, and which involve stable isotopes. You might think these would be easier to study, but because the reactions occur at much lower temperatures and densities nuclear fusion is strongly inhibited by the repulsions between the positively charged nuclei, and can only take place with very low probability by quantum tunneling. This leads to low experimental yields, and the signature for the fusion reaction is swamped by reactions produced by cosmic rays. So we are now working at the only underground nuclear astrophysics accelerator laboratory in the world where the rock above forms a protective canopy for our experiments.The structure of stars is intimately tied to the structure of nuclear matter. Neutron stars, a relic of supernovae explosions can usefully be viewed as gigantic nuclei held together by the gravitational force. Precision experiments we are performing with high energy point-like fundamental particle beams are revealing a skin of almost pure neutron matter around the nucleus whose precise thickness tells us about the likely structure of neutron stars. These beams also allow us to peer inside a proton and explore the different ways the quarks inside can re-arrange themselves. These arrangements take the form of different excited states known as nucleon resonances. We think we have a good theory, QCD, to understand the proton but in fact it predicts many more resonances than we observe, so we are going to search for the new ones! Even more exotic configurations, are the so-called hybrids, in which the glue binding quarks together combines with quarks to produce a new form of matter. This would be a major discovery.
希腊人过去常说,物质是不可分割的。当卢瑟福和他的同事证明元素可以通过核反应改变时,这一想法受到了打击。有一段时间,人们认为所有的元素都是在大爆炸中产生的。Bethe和Hoyle等科学家证明,事实上,几乎所有的元素都是在恒星的核反应中产生的,例如,核反应也让我们的太阳发光。我们仍在试图了解这些元素是如何产生的,以及恒星在其一生中是如何进化的。这个问题正在通过用望远镜对宇宙中恒星化学丰度的新的详细观察来解决,在地球上,通过试图重现恒星中发生的反应来解决这个问题。元素可以在高度爆炸性的、炎热的密集环境中通过核反应产生,例如在超新星爆炸中发现的元素,随后这些物质被抛出宇宙,最终在我们的太阳或星际介质等位置回升。在爆炸环境中,不稳定核的反应和性质对于理解这些过程中的元素生产和能量产生至关重要。人们可以将其比作洪水泛滥的河流冲破堤岸,然后流向完全不同的方向:通常情况下,生活是平静和稳定的,但在这些激烈的事件中,往往会留下永久的印记。新一代加速器设施能够生产越来越多参与这些爆炸过程的关键放射性核物种。因此,我们现在可以研究恒星中发生的反应以及随后的原子核衰变路径,这些路径最终形成了我们周围看到的稳定同位素。这些稳定同位素的元素丰度提供了关于它们往往暴力历史的编码信息。需要这一新的信息来发现这些元素最初形成的爆炸性环境的性质。在恒星较长的静止阶段,它们的演化受发生在低得多的温度和密度下的核反应控制,这些反应涉及稳定的同位素。你可能会认为这些会更容易研究,但因为反应发生在低得多的温度和密度下,核聚变被带正电的原子核之间的斥力强烈地抑制,只有非常低的概率才能通过量子隧道发生。这导致实验产量低,聚变反应的特征被宇宙射线产生的反应所淹没。因此,我们现在正在世界上唯一的地下核天体物理加速器实验室工作,上面的岩石为我们的实验形成了一个保护罩。恒星的结构与核物质的结构密切相关。中子星是超新星爆炸的遗迹,可以有效地视为巨大的原子核,通过引力将它们聚集在一起。我们正在用高能点状基本粒子束进行的精密实验揭示了原子核周围几乎是纯中子物质的外壳,它的精确厚度告诉我们中子星的可能结构。这些光束还允许我们观察质子内部,并探索内部夸克重新排列的不同方式。这些排列采用称为核子共振的不同激发态的形式。我们认为我们有一个很好的理论,QCD,来理解质子,但实际上它预测了比我们观察到的更多的共振,所以我们要寻找新的!更奇特的构型是所谓的杂化,在杂化中,胶合夸克与夸克结合在一起,产生一种新的物质形式。这将是一项重大发现。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Corrigendum to: "Shape dynamics in neutron-rich Kr isotopes: Coulomb excitation of 92Kr, 94Kr and 96Kr" [Nucl. Phys. A 899 (2013) 1-28]
勘误:“富中子 Kr 同位素的形状动力学:92Kr、94Kr 和 96Kr 的库仑激发”[Nucl。
  • DOI:
    10.1016/j.nuclphysa.2015.11.010
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Albers M
  • 通讯作者:
    Albers M
Improved astrophysical rate for the 18O(p,a)15N reaction by underground measurements
通过地下测量提高 18O(p,a)15N 反应的天体物理速率
  • DOI:
    10.1016/j.physletb.2019.01.017
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Bruno C
  • 通讯作者:
    Bruno C
Resonance strengths in the 17,18O(p, a)14,15N reactions and background suppression underground Commissioning of a new setup for charged-particle detection at LUNA
17,18O(p, a)14,15N 反应中的共振强度和地下背景抑制 在 LUNA 上调试新的带电粒子检测装置
First measurement of polarisation transfer $C^n_{x'}$ in deuteron photodisintegration
氘核光崩解中偏振转移 $C^n_{x}$ 的首次测量
  • DOI:
    10.48550/arxiv.2206.12299
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bashkanov M
  • 通讯作者:
    Bashkanov M
Shell and explosive hydrogen burning Nuclear reaction rates for hydrogen burning in RGB, AGB and Novae
壳牌和爆炸性氢燃烧 RGB、AGB 和 Novae 中氢燃烧的核反应速率
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip J Woods其他文献

Philip J Woods的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip J Woods', 18)}}的其他基金

Edinburgh Nuclear Physics Group Consolidated Grant Proposal
爱丁堡核物理小组综合赠款提案
  • 批准号:
    ST/V001051/1
  • 财政年份:
    2021
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
Edinburgh Nuclear Physics Group Consolidated Grant Proposal
爱丁堡核物理小组综合赠款提案
  • 批准号:
    ST/P004008/1
  • 财政年份:
    2017
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
ISOL-SRS: ISOL Beam Storage Ring Spectrometer
ISOL-SRS:ISOL 光束储存环光谱仪
  • 批准号:
    ST/M001652/1
  • 财政年份:
    2015
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
Edinburgh Nuclear Physics Group Consolidated Grant Proposal - Equipment
爱丁堡核物理小组综合赠款提案 - 设备
  • 批准号:
    ST/L005832/1
  • 财政年份:
    2014
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
Edinburgh Nuclear Physics Group Consolidated Grant Proposal
爱丁堡核物理小组综合赠款提案
  • 批准号:
    ST/J00006X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
ISOL Project Coordination
ISOL 项目协调
  • 批准号:
    ISOL
  • 财政年份:
    2010
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Intramural
Nuclear STructure, Astrophysics and Reactions (NuSTAR) at FAIR
FAIR 的核结构、天体物理学和反应 (NuSTAR)
  • 批准号:
    ST/G000646/1
  • 财政年份:
    2010
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
Explosive nuclear astrophysical reactions of proton-rich nuclei
富质子核的爆炸核天体物理反应
  • 批准号:
    PP/F000839/1
  • 财政年份:
    2008
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
Nuclear Physics Rolling Grant
核物理滚动资助
  • 批准号:
    ST/F011938/1
  • 财政年份:
    2008
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
Decay Spectroscopy of Exotic Nuclei at FAIR
FAIR 中奇异核的衰变光谱
  • 批准号:
    EP/E001734/1
  • 财政年份:
    2006
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant

相似国自然基金

Nuclear speckles支架蛋白SRRM2调控染色质高级结构的形成机制及功能研究
  • 批准号:
    22ZR1412400
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
研究nuclear speckles对哺乳动物早期胚胎染色体高级结构重编程和胚胎发育的调控作用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Accelerator and Nuclear Physics
REU 站点:加速器和核物理
  • 批准号:
    2348822
  • 财政年份:
    2024
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Standard Grant
Nuclear Physics Consolidated Grant
核物理综合拨款
  • 批准号:
    ST/Y000277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
Manchester Nuclear Physics CG 2023
曼彻斯特核物理 CG 2023
  • 批准号:
    ST/Y000323/1
  • 财政年份:
    2024
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
UofG Nuclear Physics Consolidated Grant
乔治城大学核物理综合拨款
  • 批准号:
    ST/Y000315/1
  • 财政年份:
    2024
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
Edinburgh Nuclear Physics Consolidated Grant 2024-27
爱丁堡核物理综合赠款 2024-27
  • 批准号:
    ST/Y000293/1
  • 财政年份:
    2024
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
Nuclear Physics Consolidated Grant 2023
核物理综合补助金 2023
  • 批准号:
    ST/Y000242/1
  • 财政年份:
    2024
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
Birmingham Nuclear Physics Consolidated Grant 2023
伯明翰核物理综合赠款 2023
  • 批准号:
    ST/Y000331/1
  • 财政年份:
    2024
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
Nuclear Physics Consolidated Grant 2023
核物理综合补助金 2023
  • 批准号:
    ST/Y000382/1
  • 财政年份:
    2024
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
Birmingham Nuclear Physics Consolidated Grant 2023
伯明翰核物理综合赠款 2023
  • 批准号:
    ST/Y00034X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Research Grant
Elements: Portable Machine Learning Models for Experimental Nuclear Physics
元素:实验核物理的便携式机器学习模型
  • 批准号:
    2311263
  • 财政年份:
    2023
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了