BRIdging Disciplines of Galactic Chemical Evolution (BRIDGCE): The Rise of the Chemical Elements

银河化学演化的桥梁学科(BRIDGCE):化学元素的兴起

基本信息

  • 批准号:
    ST/M000958/1
  • 负责人:
  • 金额:
    $ 38.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

The main scientific goal of this consortium is to study the chemical evolution of the universe from the Big Bang up to now by using chemical elements as fingerprints of the processes that took place in stars and galaxies. Although light can travel for billions of years and we can nowadays observe the cosmic microwave background emitted at the epoch of recombination, most of the stars that formed in the early universe are long dead, and larger structures like the first halos have merged or been disrupted. It is therefore not possible to observe them directly. Fortunately, stars and galactic structures leave chemical fingerprints in the stars that formed out of their ashes. Thus, in extremely-metal-poor (EMP) stars that have a low enough mass to live longer than the current age of the universe, we can observe the chemical fingerprints of the processes that took place in the early universe. Moreover, we can constrain their properties by comparing theoretical models of stars with observations of EMP stars in the halo of our galaxy, and by generating models of the chemical evolution of galaxies in cosmologically-valid simulations. Furthermore, by simulating stellar and galactic chemical evolution from the early universe until the present day, we can reproduce the entire chemical history of galaxies and the Milky Way in particular. Our research also addresses other key scientific questions: ``How can we explore and understand the extremes of the universe?'' by studying and constraining the properties of supernova explosions and ``What is the nature of nuclear and hadronic matter? '' by improving our knowledge of nuclear reaction rates. These studies linked to the rise of the chemical elements constitute the main scientific goals of the proposed research.To answer questions like: "What are the properties of the early universe?, Where were the elements we are made of created?", knowledge in various disciplines of astrophysics and nuclear physics is necessary. Indeed, nuclear data (nuclear reaction rates in particular) are a key input for stellar evolution models since nuclear reactions provide the energy that powers stars. This information determines stellar lifetimes, and the composition of their final ejecta. Stars, in turn, provide important feedback into the galaxies they belong to through the light they radiate, their powerful supernova explosions and all the chemical elements they produce. The outputs of stellar evolution models are therefore key ingredients for galactic chemical evolution models. These models follow successive episodes of star formation and trace the history of the enrichment of the elements in various galaxies. The model predictions can then be compared to observations of EMP stars that carry the chemical fingerprints of the cumulative chemical enrichment that preceded their birth. Comparison to observations can thus constrain both the galactic and stellar properties. Stellar evolution models can also be used as virtual nuclear physics laboratories, in which we can test the impact of uncertainties in certain nuclear reaction rates. To answer these questions, this consortium will adopt a multidisciplinary approach, gathering expertise from world-leading scientists at five UK universities, and will also further its existing intersectoral links with companies developing and producing particle detectors and high-tech shared-memory computer hardware.Our research will apply innovative techniques across different disciplines and attack this scientific challenge through 4 projects corresponding to 3 different physical scales:- Galactic and extra-Galactic scales (Project A)- Stars and their nucleosynthesis (Project B)- Micro-physics: sensitivity to nuclear and stellar modelling uncertainties (Project C) and the impact of stellar environments on nuclear reaction rates and stellar evolution (Project D)
该联盟的主要科学目标是通过使用化学元素作为恒星和星系中发生的过程的指纹,研究宇宙从大爆炸到现在的化学演变。虽然光可以传播数十亿年,我们现在可以观察到宇宙微波背景辐射,在重组时期,早期宇宙中形成的大多数恒星早就死了,像第一个光晕这样的大结构已经合并或被破坏了。因此,直接观察它们是不可能的。幸运的是,恒星和星系结构在它们的灰烬中形成的恒星上留下了化学指纹。因此,在极贫金属(EMP)恒星中,我们可以观察到早期宇宙中发生的过程的化学指纹,这些恒星的质量足够低,可以活得比现在的宇宙年龄长。此外,我们可以通过将恒星的理论模型与我们银河系晕中的EMP恒星的观测结果进行比较,并通过在宇宙学上有效的模拟中生成星系的化学演化模型,来约束它们的性质。此外,通过模拟从早期宇宙到现在的恒星和星系的化学演化,我们可以重现星系的整个化学历史,尤其是银河系。我们的研究还涉及其他关键的科学问题:“我们如何探索和理解宇宙的极端?”“通过研究和限制超新星爆炸的性质”和“核和强子物质的性质是什么?”通过提高我们对核反应速率的了解。这些与化学元素的增加有关的研究构成了拟议研究的主要科学目标。为了回答这样的问题:“早期宇宙的性质是什么?”“构成我们的元素是在哪里被创造出来的?”,天体物理学和核物理学各学科的知识是必要的。事实上,核数据(特别是核反应速率)是恒星演化模型的关键输入,因为核反应提供了恒星的能量。这些信息决定了恒星的寿命,以及它们最终喷出物的成分。反过来,恒星通过它们发出的光、强大的超新星爆炸以及它们产生的所有化学元素,向它们所属的星系提供重要的反馈。因此,恒星演化模型的结果是星系化学演化模型的关键组成部分。这些模型遵循恒星形成的连续事件,并追踪不同星系中元素富集的历史。然后,可以将模型预测与EMP恒星的观测结果进行比较,这些恒星在诞生之前就带有累积化学富集的化学指纹。因此,与观测结果的比较可以约束星系和恒星的性质。恒星演化模型也可以用作虚拟核物理实验室,在其中我们可以测试不确定性对某些核反应速率的影响。为了回答这些问题,该联盟将采用多学科方法,从英国五所大学的世界领先科学家那里收集专业知识,并将进一步加强与开发和生产粒子探测器和高科技共享内存计算机硬件的公司之间的现有跨部门联系。我们的研究将应用不同学科的创新技术,并通过对应于3个不同物理尺度的4个项目来应对这一科学挑战:-银河系和银河系外尺度(项目A)-恒星及其核合成(项目B)-微观物理学:对核和恒星模型不确定性的敏感性(项目C)以及恒星环境对核反应速率和恒星演化的影响(项目D)

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The GALAH+ survey: Third data release
  • DOI:
    10.1093/mnras/stab1242
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Buder;Sanjib Sharma;J. Kos;A. Amarsi;T. Nordlander;K. Lind;S. Martell;M. Asplund;J. Bland-Ha
  • 通讯作者:
    S. Buder;Sanjib Sharma;J. Kos;A. Amarsi;T. Nordlander;K. Lind;S. Martell;M. Asplund;J. Bland-Ha
The Andromeda Galaxy's Last Major Merger: Constraints from the survey of Planetary Nebulae
仙女座星系的最后一次重大合并:行星状星云调查的限制
The survey of planetary nebulae in Andromeda (M31) - IV. Radial oxygen and argon abundance gradients of the thin and thicker disc
仙女座行星状星云 (M31) 的调查 - IV。
Elevated r-process Enrichment in Gaia Sausage and Sequoia
  • DOI:
    10.3847/2041-8213/abdbb8
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Aguado;V. Belokurov;G. Myeong;N. Evans;C. Kobayashi;L. Sbordone;J. Chanamé;C. Navarrete
  • 通讯作者:
    D. Aguado;V. Belokurov;G. Myeong;N. Evans;C. Kobayashi;L. Sbordone;J. Chanamé;C. Navarrete
The survey of planetary nebulae in Andromeda (M31) V. Chemical enrichment of the thin and thicker discs of Andromeda: Oxygen to argon abundance ratios for planetary nebulae and HII regions
仙女座行星状星云巡天 (M31) V. 仙女座薄盘和厚盘的化学富集:行星状星云和 HII 区域的氧与氩丰度比
  • DOI:
    10.1051/0004-6361/202244258
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Arnaboldi M
  • 通讯作者:
    Arnaboldi M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chiaki Kobayashi其他文献

Fabrication of PZT/ZnO Core-Shell Nanowires and Their Applications to Piezoelectric Nanogenerators
PZT/ZnO核壳纳米线的制备及其在压电纳米发电机中的应用
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.Fujisawa;M.Shimizu;R.Kuri;S.Na- kashima;Y.Kotaka and K.Honda;Hironori Fujisawa;Hiroaki Yane;M.Shimizu;小林千晃;C.Kobayashi;M.Shimizu;藤澤浩訓;M.Shimizu;小林千晃;小林千晃;井川将志;藤澤 浩訓;Chiaki Kobayashi;Masashi Igawa;小林 千晃;井川 将志;Yuta Iwamoto;Masaru Shimizu
  • 通讯作者:
    Masaru Shimizu
Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way
来自宇宙黎明的银河系核球中的金属极度贫乏的恒星
  • DOI:
    10.1038/nature15747
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    L. Howes;A. Casey;M. Asplund;S. C. Keller;David Yong;D. Nataf;R. Poleski;R. Poleski;K. Lind;Chiaki Kobayashi;Chiaki Kobayashi;C. Owen;Melissa Ness;M. Bessell;G. Costa;Brian P. Schmidt;P. Tisserand;P. Tisserand;A. Udalski;M. Szymański;I. Soszyński;G. Pietrzyński;G. Pietrzyński;K. Ulaczyk;K. Ulaczyk;Ł. Wyrzykowski;P. Pietrukowicz;J. Skowron;S. Kozłowski;P. Mróz
  • 通讯作者:
    P. Mróz
Effects of Nodal inhibition on development of temnopleurid sea urchins
节点抑制对海胆发育的影响
  • DOI:
    10.1111/ede.12254
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Mami Kasahara;Chiaki Kobayashi;Chikara Sakaguchi;Chisato Miyahara;A. Yamanaka;Chisato Kitazawa
  • 通讯作者:
    Chisato Kitazawa
A network biology approach evaluating the anticancer effects of bortezomib identifies SPARC as a therapeutic target in adult T-cell leukemia cells
评估硼替佐米抗癌作用的网络生物学方法将 SPARC 确定为成人 T 细胞白血病细胞的治疗靶点
ENSO response of global atmospheric energy conversion and atmospheric circulation
全球大气能量转换和大气环流的 ENSO 响应
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chiaki Kobayashi;Shuhei Maeda
  • 通讯作者:
    Shuhei Maeda

Chiaki Kobayashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chiaki Kobayashi', 18)}}的其他基金

BRIdging Disciplines of Galactic Chemical Evolution (BRIDGCE) Consortium 2021-2024
银河化学演化桥接学科 (BRIDGCE) 联盟 2021-2024
  • 批准号:
    ST/V000632/1
  • 财政年份:
    2021
  • 资助金额:
    $ 38.72万
  • 项目类别:
    Research Grant

相似海外基金

Developing Teaching Tools to Promote Transfer of Core Concept Knowledge Across Biological Scales and Sub-disciplines.
开发教学工具以促进跨生物尺度和子学科的核心概念知识的转移。
  • 批准号:
    2336776
  • 财政年份:
    2024
  • 资助金额:
    $ 38.72万
  • 项目类别:
    Standard Grant
Developing Teaching Tools to Promote Transfer of Core Concept Knowledge Across Biological Scales and Sub-disciplines.
开发教学工具以促进跨生物尺度和子学科的核心概念知识的转移。
  • 批准号:
    2336777
  • 财政年份:
    2024
  • 资助金额:
    $ 38.72万
  • 项目类别:
    Standard Grant
Developing Teaching Tools to Promote Transfer of Core Concept Knowledge Across Biological Scales and Sub-disciplines.
开发教学工具以促进跨生物尺度和子学科的核心概念知识的转移。
  • 批准号:
    2336778
  • 财政年份:
    2024
  • 资助金额:
    $ 38.72万
  • 项目类别:
    Standard Grant
Planning: FIRE-PLAN: Planning Megafire Research Across Scales and Disciplines
规划:FIRE-PLAN:规划跨规模和学科的特大火灾研究
  • 批准号:
    2326499
  • 财政年份:
    2023
  • 资助金额:
    $ 38.72万
  • 项目类别:
    Standard Grant
Building Capacity for Investigating the Use of Spatial Reasoning in Fluid-Earth Science Disciplines
流体地球科学学科中空间推理应用研究能力建设
  • 批准号:
    2225637
  • 财政年份:
    2023
  • 资助金额:
    $ 38.72万
  • 项目类别:
    Standard Grant
Exploring the trends and perceptions of diversified scholarly publishing for dialogue across disciplines
探索多元化学术出版的趋势和认知,促进跨学科对话
  • 批准号:
    23K12845
  • 财政年份:
    2023
  • 资助金额:
    $ 38.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
NSF-BSF: Learning the concept of Dynamic Equilibrium across disciplines with SystEms Augmented Mechanistic Representations
NSF-BSF:通过 SystEms 增强机械表示学习跨学科动态平衡的概念
  • 批准号:
    2240216
  • 财政年份:
    2023
  • 资助金额:
    $ 38.72万
  • 项目类别:
    Standard Grant
Mentoring Across Disciplines: Aging and Infectious Diseases with a Focus on Mobility
跨学科指导:以流动性为重点的老龄化和传染病
  • 批准号:
    10757167
  • 财政年份:
    2023
  • 资助金额:
    $ 38.72万
  • 项目类别:
Equitable and Effective Teaching in Undergraduate STEM Education: A Framework for Institutions, Educators, and Disciplines
本科 STEM 教育中公平有效的教学:机构、教育工作者和学科的框架
  • 批准号:
    2309335
  • 财政年份:
    2023
  • 资助金额:
    $ 38.72万
  • 项目类别:
    Standard Grant
S-STEM Collaborative Planning Grant: An accelerated 3+2 pathway to BS and MS degrees in Semiconductor Manufacturing and Quantum Science disciplines
S-STEM 协作规划补助金:获得半导体制造和量子科学学科学士和硕士学位的加速 3 2 途径
  • 批准号:
    2322670
  • 财政年份:
    2023
  • 资助金额:
    $ 38.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了