ESTIMATING RETIREMENT MODELS USING SUBJECTIVE DATA
使用主观数据估计退休模型
基本信息
- 批准号:6341518
- 负责人:
- 金额:$ 15.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-01-01 至 2004-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION: The basic aim of this research is to improve understanding of
retirement behavior. More specifically, the goal is to provide quantitative
estimates of the impact of potential social security reforms on life cycle
employment and savings behavior. To accomplish that goal, the proposed
research will specify and structurally estimate dynamic models of retirement
using the new Health and Retirement Survey (HRS) and incorporating health,
mortality, savings, and social security rules. In that context, the
specific aims of the project are: (1)to develop and validate methods for
solving dynamic optimization models that involve discrete and continuous
choice variables and state space elements; (2)to implement a stochastic
dynamic model of retirement behavior in which individuals are making
employment and savings decisions in a setting that accounts for uncertainty
about future wages, future health and survival, and the future generosity of
the Social Security System; (3)to develop methods for the validation of
survey questions involving subjective expectations about the future
environment (constraints) and future choices; (4)to develop and implement
methods for the incorporation of data on subjective expectations into the
estimation of dynamic models of retirement; (5) to simulate the effect of
potential policy changes in social security rules on the savings and
retirement decision and on welfare. The proposed research connects two
broad areas of research. First, and primarily, it builds on recent
empirical studies of retirement behavior, in particular on those adopting
dynamic structural approaches. Second, the research contributes to the
relatively new and growing literature of empirical studies that make use of
subjective expectations.
描述:本研究的基本目的是提高对
退休行为。 更具体地说,目标是提供定量的
潜在社会保障改革对生命周期影响的估计
就业和储蓄行为。 为了实现这一目标,建议
研究将详细说明并结构性地估计退休的动态模型
使用新的健康和退休调查(HRS)并将健康纳入其中,
死亡率、储蓄和社会保障规则。 在此背景下,
该项目的具体目标是:(1)开发和验证方法
求解涉及离散和连续的动态优化模型
选择变量和状态空间元素; (2) 实现随机
个人退休行为的动态模型
在考虑不确定性的情况下的就业和储蓄决策
关于未来的工资、未来的健康和生存以及未来的慷慨
社会保障体系; (3)制定验证方法
涉及对未来主观预期的调查问题
环境(约束)和未来的选择; (4)制定并实施
将主观期望数据纳入预测的方法
退休动态模型的估计; (5) 模拟效果
关于储蓄和社会保障规则的潜在政策变化
退休决定和福利。 拟议的研究将两个
广泛的研究领域。 首先,也是主要的是,它建立在最近的
对退休行为的实证研究,特别是那些采用
动态结构方法。 其次,该研究有助于
相对较新且不断增长的实证研究文献利用了
主观期望。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Social Security and the Retirement and Savings Behavior of Low Income Households.
- DOI:10.1016/j.jeconom.2008.05.004
- 发表时间:2008-07
- 期刊:
- 影响因子:6.3
- 作者:van der Klaauw W;Wolpin KI
- 通讯作者:Wolpin KI
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KENNETH I WOLPIN其他文献
KENNETH I WOLPIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KENNETH I WOLPIN', 18)}}的其他基金
ESTIMATING RETIREMENT MODELS USING SUBJECTIVE DATA
使用主观数据估计退休模型
- 批准号:
2855845 - 财政年份:1998
- 资助金额:
$ 15.58万 - 项目类别:
ESTIMATING RETIREMENT MODELS USING SUBJECTIVE DATA
使用主观数据估计退休模型
- 批准号:
2456004 - 财政年份:1998
- 资助金额:
$ 15.58万 - 项目类别:
ESTIMATING RETIREMENT MODELS USING SUBJECTIVE DATA
使用主观数据估计退休模型
- 批准号:
6137057 - 财政年份:1998
- 资助金额:
$ 15.58万 - 项目类别:
PUBLIC WELFARE AND LIFE CYCLE DECISIONS OF YOUNG WOMEN
公共福利和年轻女性的生命周期决策
- 批准号:
2403586 - 财政年份:1995
- 资助金额:
$ 15.58万 - 项目类别:
PUBLIC WELFARE AND LIFE CYCLE DECISIONS OF YOUNG WOMEN
公共福利和年轻女性的生命周期决策
- 批准号:
2207572 - 财政年份:1995
- 资助金额:
$ 15.58万 - 项目类别:
PUBLIC WELFARE AND LIFE CYCLE DECISIONS OF YOUNG WOMEN
公共福利和年轻女性的生命周期决策
- 批准号:
2207573 - 财政年份:1995
- 资助金额:
$ 15.58万 - 项目类别:
PUBLIC WELFARE AND LIFE CYCLE DECISIONS OF YOUNG WOMEN
公共福利和年轻女性的生命周期决策
- 批准号:
2673962 - 财政年份:1995
- 资助金额:
$ 15.58万 - 项目类别:
相似海外基金
Construction of a learning support system through learning behavior prediction using student modeling
使用学生建模通过学习行为预测构建学习支持系统
- 批准号:
23K17604 - 财政年份:2023
- 资助金额:
$ 15.58万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Service Process Measurement System based on Behavior Prediction in Nursing-care Service
基于行为预测的护理服务过程测量系统开发
- 批准号:
22K12286 - 财政年份:2022
- 资助金额:
$ 15.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: IMR: MM-1C: Privacy-preserving IoT Analytics and Behavior Prediction on Network Edge
合作研究:IMR:MM-1C:网络边缘上的隐私保护物联网分析和行为预测
- 批准号:
2219866 - 财政年份:2022
- 资助金额:
$ 15.58万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1C: Privacy-preserving IoT Analytics and Behavior Prediction on Network Edge
合作研究:IMR:MM-1C:网络边缘上的隐私保护物联网分析和行为预测
- 批准号:
2219867 - 财政年份:2022
- 资助金额:
$ 15.58万 - 项目类别:
Standard Grant
Object State Change Detection and Human Behavior Prediction Focused on Hand Manipulation
专注于手部操作的物体状态变化检测和人类行为预测
- 批准号:
21J11626 - 财政年份:2021
- 资助金额:
$ 15.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: RI: Medium: Learning Joint Crowd-Space Embeddings for Cross-Modal Crowd Behavior Prediction
合作研究:RI:Medium:学习联合人群空间嵌入以进行跨模式人群行为预测
- 批准号:
1955365 - 财政年份:2020
- 资助金额:
$ 15.58万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Learning Joint Crowd-Space Embeddings for Cross-Modal Crowd Behavior Prediction
合作研究:RI:Medium:学习联合人群空间嵌入以进行跨模式人群行为预测
- 批准号:
1955404 - 财政年份:2020
- 资助金额:
$ 15.58万 - 项目类别:
Standard Grant
Behavior Prediction of Traffic Participants based on Micro and Macro features for Urban Automated Driving
城市自动驾驶基于微观和宏观特征的交通参与者行为预测
- 批准号:
20K04397 - 财政年份:2020
- 资助金额:
$ 15.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Towards Fatigue Behavior Prediction of Structural Materials through Computationally-Informed Textural and Microstructural Characteristics
职业:通过计算信息的纹理和微观结构特征预测结构材料的疲劳行为
- 批准号:
1751591 - 财政年份:2018
- 资助金额:
$ 15.58万 - 项目类别:
Standard Grant
Research on Behavior Prediction of Cylindrical Line Structure with Rotation in Flow
流动中旋转圆柱线结构行为预测研究
- 批准号:
18H01634 - 财政年份:2018
- 资助金额:
$ 15.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




