Experimental Particle Physics at the University of Edinburgh

爱丁堡大学实验粒子物理

基本信息

  • 批准号:
    ST/S000828/1
  • 负责人:
  • 金额:
    $ 310.22万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The Edinburgh Experimental Particle Physics group is currently working in three different running experiments and we are also working on several future projects.The ATLAS experiment at the Large Hadron Collider (LHC): ATLAS is one of two detectors able to study a wide variety of particles created from the collision of protons at the highest energies ever created, and it addresses fundamental questions. The most well known is that of the origin of mass. The beautiful symmetry which underlies our understanding of particle interactions inherently demands that all particles are massless. This cannot be the case, and the elegant solution put forward is now known as the Higgs mechanism. The discovery of the Higgs boson has verified this, and now we must measure its properties in great detail. Another area addressed by ATLAS is the search for new heavy particles such as new heavy Higgs like particles or supersymmetric particles, which are predicted in models trying to address shortcomings of the Standard Model, such as why their is dark matter.The LHCb experiment at the LHC. Prior to the 1960s, it had been thought that matter and anti-matter would behave in the same way. However, it was discovered that this symmetry was violated, and that matter does not behave in an identical way to anti-matter. This is embodied in the phenomenon of CP violation and is essential to the understanding of the early universe. Shortly after the big bang there were equal amounts of matter and anti-matter. During expansion and cooling, matter and anti-matter would have annihilated into photons to leave a universe full of radiation, but no stars and galaxies. It was shown in 1967 by Sakarov that if three conditions, including CP violation, were met, then it would be possible for a small imbalance of matter over anti-matter to accrue, which would be sufficient to explain the existence of the universe. LHCb measures differences (CP violation) in behaviour of particles and antiparticle with at least one b or anti-b quark and searches for very rare decays of these particles, which could be affected by heavy unobserved particles. The LUX experiment, which is the current world-leading apparatus searching for dark matter. It is well known that some 27% of the Universe is comprised of Dark Matter - that is matter of some form which does not interact in a way which produces radiation, or other easy to observe signatures. There are many theoretical candidates and resolution of this mystery must include the direct detection of our own galactic dark matter. Thermal production of Weakly Interacting Massive Particles in the early universe naturally results in the correct dark matter abundance today, and most supersymmetry models mentioned earlier contain such particles. Many other well-motivated theories also invoke particles that may be searched for. We are also working hard on the design, development and construction of the upgraded detectors at the LHC for around 2020. The intensity of the beams will be increased and the data rates recorded by the detectors will increase by orders of magnitude. This requires building new detectors for precisely measuring trajectories of longlived particles, for measuring Cherenkov photons to determine their speed, and faster and more powerful simulation, and new ways to handle the massive data rates. We are also constructing and operating the LUX-ZEPLIN project, expected to dominate direct searches for dark matter in the next decade. We work on simulations, control systems for the 10 tonnes of liquid xenon, and analysis.We have recently started an activity neutrino physics by joining both the DUNE and Hyper-K experiments to be constructed. One of the most interesting fact of nature is that there are only three species of neutrinos, which until recently were thought to be massless. It is important to measure precisely the "mixing" between the species and to search for CP violation in neutrinos.
爱丁堡实验粒子物理小组目前正在进行三个不同的实验,我们也在进行几个未来的项目。在大型强子对撞机(LHC)上的ATLAS实验:ATLAS是两个能够研究各种各样的粒子的探测器之一,这些粒子是由有史以来最高能量的质子碰撞产生的,它解决了一些基本问题。最著名的是质量的起源。作为我们理解粒子相互作用基础的美丽的对称性本质上要求所有粒子都是无质量的。这是不可能的,而提出的优雅解决方案现在被称为希格斯机制。希格斯玻色子的发现证实了这一点,现在我们必须非常详细地测量它的性质。ATLAS解决的另一个领域是寻找新的重粒子,如新的重希格斯粒子或超对称粒子,这些粒子在试图解决标准模型缺陷的模型中预测,例如为什么它们是暗物质。LHC的LHCb实验。在20世纪60年代之前,人们一直认为物质和反物质的行为是相同的。然而,人们发现这种对称性被破坏了,物质的行为方式与反物质不同。这体现在CP破坏现象中,对于理解早期宇宙至关重要。大爆炸后不久,物质和反物质的数量相等。在膨胀和冷却过程中,物质和反物质会湮灭成光子,留下一个充满辐射的宇宙,但没有恒星和星系。1967年,萨卡洛夫证明,如果满足包括CP破坏在内的三个条件,那么物质与反物质之间的微小不平衡就有可能产生,这足以解释宇宙的存在。LHC B测量具有至少一个B或反B夸克的粒子和反粒子的行为差异(CP破坏),并搜索这些粒子的非常罕见的衰变,这可能受到未观测到的重粒子的影响。LUX实验是目前世界领先的寻找暗物质的仪器。众所周知,宇宙的27%是由暗物质组成的,暗物质是某种形式的物质,它们不会以产生辐射或其他容易观察到的特征的方式相互作用。有许多理论上的候选者和解决这个谜必须包括我们自己的银河系暗物质的直接检测。早期宇宙中弱相互作用大质量粒子的热产生自然会导致今天正确的暗物质丰度,并且前面提到的大多数超对称模型都包含这样的粒子。许多其他动机良好的理论也引用了可能被搜索的粒子。我们还在努力设计、开发和建造2020年左右LHC的升级探测器。光束的强度将增加,探测器记录的数据速率将增加几个数量级。这需要建造新的探测器来精确测量长寿命粒子的轨迹,测量切伦科夫光子以确定它们的速度,更快,更强大的模拟,以及处理大量数据速率的新方法。我们还在建设和运营LUX-ZEPLIN项目,预计该项目将在未来十年主导对暗物质的直接搜索。我们致力于模拟、控制10吨液态氙的系统和分析。我们最近通过加入即将建造的DUNE和Hyper-K实验,开始了中微子物理学活动。自然界最有趣的事实之一是,只有三种中微子,直到最近才被认为是无质量的。精确测量中微子的“混合”和寻找中微子的CP破坏是很重要的。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On-line computing challenges: detector and readout requirements
在线计算挑战:探测器和读数要求
  • DOI:
    10.48550/arxiv.2111.04168
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brenner R
  • 通讯作者:
    Brenner R
Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils
  • DOI:
    10.1103/physrevd.104.092009
  • 发表时间:
    2021-11-23
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Akerib, D. S.;Al Musalhi, A. K.;Zarzhitsky, P.
  • 通讯作者:
    Zarzhitsky, P.
First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment
  • DOI:
    10.1103/physrevlett.131.041002
  • 发表时间:
    2023-07-28
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Aalbers, J.;Akerib, D. S.;Zuckerman, A.
  • 通讯作者:
    Zuckerman, A.
Enhancing the sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment to low energy signals
增强 LUX-ZEPLIN (LZ) 暗物质实验对低能量信号的灵敏度
  • DOI:
    10.48550/arxiv.2101.08753
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akerib D
  • 通讯作者:
    Akerib D
Cosmogenic production of $^{37}$Ar in the context of the LUX-ZEPLIN experiment
LUX-ZEPLIN 实验背景下 $^{37}$Ar 的宇宙生成
  • DOI:
    10.48550/arxiv.2201.02858
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aalbers J
  • 通讯作者:
    Aalbers J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Franz Muheim其他文献

Franz Muheim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Franz Muheim', 18)}}的其他基金

LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
  • 批准号:
    ST/X006484/1
  • 财政年份:
    2024
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
LHCb Upgrade 2 bridging Oct 2023 - March 2024
LHCb 升级 2 桥接 2023 年 10 月 - 2024 年 3 月
  • 批准号:
    ST/Y005570/1
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
LHCb Upgrade II: Maximising HL-LHC Discovery Potential
LHCb 升级 II:最大化 HL-LHC 发现潜力
  • 批准号:
    ST/V003399/1
  • 财政年份:
    2021
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
LHCb Upgrade II: Maximising HL-LHC Discovery Potential (Bridging Funding)
LHCb 升级 II:最大化 HL-LHC 发现潜力(过渡资金)
  • 批准号:
    ST/V003070/1
  • 财政年份:
    2020
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
PPGP Capital Equipment 2017 - 2019
PPGP 资本设备 2017 - 2019
  • 批准号:
    ST/P005810/1
  • 财政年份:
    2017
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
DUNE: Pre-Construction Phase
沙丘:施工前阶段
  • 批准号:
    ST/R000115/1
  • 财政年份:
    2017
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
Experimental Particle Physics at the University of Edinburgh
爱丁堡大学实验粒子物理
  • 批准号:
    ST/N000269/1
  • 财政年份:
    2015
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
PPGP Capital Equipment 2015 - 2019
PPGP 资本设备 2015 - 2019
  • 批准号:
    ST/N001257/1
  • 财政年份:
    2015
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
LHCb Ugrade: Beyond the Energy Frontier
LHCb 升级:超越能源前沿
  • 批准号:
    ST/L003538/1
  • 财政年份:
    2014
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
LHCb Upgrade Bridging Funds Jan-Sept 2014
LHCb 升级过渡基金 2014 年 1 月至 9 月
  • 批准号:
    ST/M00192X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant

相似国自然基金

环形等离子体中的离子漂移波不稳定性和湍流的保结构Particle-in-Cell模拟
  • 批准号:
    11905220
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于多禁带光子晶体微球构建"Array on One Particle"传感体系
  • 批准号:
    21902147
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
空气污染(主要是diesel exhaust particle,DEP)和支气管哮喘关系的研究
  • 批准号:
    30560052
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

UCL Experimental Particle Physics Responsive PDRA Call (2023-2025)
伦敦大学学院实验粒子物理响应 PDRA 征集(2023-2025)
  • 批准号:
    ST/X005992/1
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
Experimental Particle Physics with a Focus on Neutrino Physics
以中微子物理为重点的实验粒子物理
  • 批准号:
    2883567
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Studentship
Experimental Particle Physics at the University of Edinburgh
爱丁堡大学实验粒子物理
  • 批准号:
    ST/X005984/1
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
Experimental Particle Physics: Responsive RA Call
实验粒子物理:响应式 RA 调用
  • 批准号:
    ST/X005941/1
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
Responsive RAs for the Birmingham Experimental Particle Physics Programme
伯明翰实验粒子物理项目的响应式 RA
  • 批准号:
    ST/X005976/1
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
Experimental Particle Physics Research at High Energies
高能实验粒子物理研究
  • 批准号:
    2309945
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Continuing Grant
Particle Physics Experimental Consolidated Grant (2022-2025)
粒子物理实验综合资助(2022-2025)
  • 批准号:
    ST/W000601/1
  • 财政年份:
    2022
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
Experimental Particle Physics
实验粒子物理
  • 批准号:
    CRC-2019-00278
  • 财政年份:
    2022
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Canada Research Chairs
Experimental Particle Physics
实验粒子物理
  • 批准号:
    2152029
  • 财政年份:
    2022
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Standard Grant
UCL Experimental Particle Physics Consolidated Grant (2022-2025)
伦敦大学学院实验粒子物理综合资助(2022-2025)
  • 批准号:
    ST/W00058X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了