Particle Theory at the Higgs Centre
希格斯中心的粒子理论
基本信息
- 批准号:ST/T000600/1
- 负责人:
- 金额:$ 163.09万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There are two types of fundamental forces in Nature: those responsible for particle interactions at subatomic scales and those responsible for the large scale structure of the universe. The former is described by Quantum Field Theories (QFT) such as the Standard Model(SM). Currently, our understanding of Nature at the most fundamental level is at the crossroads. In 2012, the LHC at CERN collided protons at higher energies than ever before, and observed sufficient collisions to find a significant excess, consistent with the Higgs boson of the SM. Over recent years it has become evident that this is indeed a SM Higgs, responsible for generating masses for vector bosons, leptons and quarks. Currently data at even higher energies is being taken at LHC, and it should soon become clearer whether there is more physics at the TeV scale, or whether we need to build machines capable of going to even higher energies. At large scales the European Planck satellite has given the most precise measurements of the cosmic microwave background (CMB) and it is an open question to determine the particle physics model best capable of describing the physics underlying the large scale properties of the Universe. In 2016 the detection of gravitational waves was announced by LIGO, marking the start of a new chapter in astrophysics. Thus at both small and large scales, this is a transformative time in fundamental physics.Our programme of research at the Higgs Centre for Theoretical Physics in Edinburgh is designed to be at the forefront of these new discoveries: indeed Peter Higgs himself is Emeritus Professor here. Specifically, we provide theoretical calculations, using pen and paper, and the most powerful supercomputers, of both the huge number of background processes to be seen at LHC due to known physics, and the tiny signals expected in various models of new physics, in order to discriminate between signal and background, and thus maximise the discovery potential of the LHC. In parallel, we will attempt to understand the more complete picture of all the forces of Nature that may begin to emerge. The fundamental force responsible for large scale structure is described by Einstein's General Theory of Relativity (GR). During the last three decades, string theory has emerged as a conceptually rich theoretical framework reconciling both GR and QFT. The low-energy limit of String Theory is supergravity (SUGRA), a nontrivial extension of GR in which the universe is described by a spacetime with additional geometric data. Members of the group have pioneered approaches to deriving observable cosmological consequences of String Theory, to studying how the geometrical notions on which GR is predicated change at very small ("stringy") distance scales. The group is also engaged in using these theories to improve calculations in existing field theories. Recent discoveries of relationships between QCD amplitudes and GR, known as the 'double copy', offer new insight into gravitational phenomena.In summary, our research will impinge on both theoretical and computational aspects relevant to probing the phenomenology of LHC data, and will also encompass a wide range of topics in QFT and gravitational aspects of String Theory, impinging on cosmology, particle physics and on the very nature of physics itself.
本质上有两种类型的基本力:那些负责亚原子尺度上粒子相互作用的人和负责宇宙大小结构的粒子相互作用。前者由量子场理论(QFT)(例如标准模型(SM))描述。目前,我们对自然的理解最基本的是十字路口。 2012年,CERN的LHC比以往更高的能量碰撞质子,并观察到足够的碰撞以发现显着的过量,这与SM的Higgs玻色子一致。近年来,已经很明显,这确实是一个sm higgs,负责为矢量玻色子,瘦素和夸克产生质量。目前,LHC正在采用更高能量的数据,是否在TEV量表上有更多物理学,或者我们是否需要制造能够达到更高能量的机器。在很大程度上,欧洲普朗克卫星对宇宙微波背景(CMB)进行了最精确的测量,这是一个开放的问题,是确定粒子物理模型最能够描述宇宙大规模特性的物理学的粒子物理模型。在2016年,Ligo宣布了引力波的检测,标志着天体物理学的新章节的开始。因此,在小规模和大尺度上,这是基本物理学的变革时期。爱丁堡的希格斯理论物理中心的研究计划旨在在这些新发现的最前沿:确实,彼得·希格斯本人是这里的名誉教授。具体而言,我们使用笔和纸以及最强大的超级计算机提供理论计算,这是由于已知的物理学而在LHC上看到的大量背景过程,以及在各种新物理学模型中预期的微小信号,以区分信号和背景,从而最大程度地提高LHC的发现潜力。同时,我们将尝试理解可能开始出现的所有自然力量的更完整的画面。爱因斯坦的一般相对论(GR)描述了负责大规模结构的基本力。在过去的三十年中,弦理论已成为一个概念丰富的理论框架,并核对GR和QFT。字符串理论的低能量极限是超级强度(Sugra),这是GR的非平凡扩展,其中宇宙由带有其他几何数据的时空描述。该小组的成员具有开创性的方法来推导弦理论的可观察到的宇宙学后果,以研究如何在很小(“ stricty”)距离尺度下进行GR的几何概念。该小组还从事使用这些理论来改善现有现场理论的计算。 QCD振幅与GR之间关系的最新发现,被称为“双复制”,为引力现象提供了新的见解。总而言之,我们的研究将影响与探测LHC数据现象学相关的理论和计算方面,并且还将在QFT和引力的物理学方面和重力范围内的物理学和重力范围内的物理学以及Imports Impmosts Impmssimiss Impsmssimiss Imporsive Impsoms Imporsimiss Impsompssimiss Impsome Impsompssimistimiss Importimpassimantimptimentimentimentimentimentimentiment和Imposity Impsmists Imporsick Impsmistimpass。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pion and kaon fragmentation functions at next-to-next-to-leading order
π 和 kaon 碎片函数处于倒数第二顺序
- DOI:10.1016/j.physletb.2022.137456
- 发表时间:2022
- 期刊:
- 影响因子:4.4
- 作者:Abdul Khalek R
- 通讯作者:Abdul Khalek R
From positive geometries to a coaction on hypergeometric functions
从正几何到超几何函数的相互作用
- DOI:10.1007/jhep02(2020)122
- 发表时间:2020
- 期刊:
- 影响因子:5.4
- 作者:Abreu S
- 通讯作者:Abreu S
Self-consistent determination of proton and nuclear PDFs at the Electron Ion Collider
在电子离子对撞机上自洽确定质子和核 PDF
- DOI:10.1103/physrevd.103.096005
- 发表时间:2021
- 期刊:
- 影响因子:5
- 作者:Abdul Khalek R
- 通讯作者:Abdul Khalek R
Learning trivializing flows
学习微不足道的流程
- DOI:10.1140/epjc/s10052-023-11838-8
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Albandea D
- 通讯作者:Albandea D
Determination of unpolarized pion fragmentation functions using semi-inclusive deep-inelastic-scattering data
- DOI:10.1103/physrevd.104.034007
- 发表时间:2021-05
- 期刊:
- 影响因子:5
- 作者:Rabah Abdul Khalek;V. Bertone;E. Nocera
- 通讯作者:Rabah Abdul Khalek;V. Bertone;E. Nocera
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Ball其他文献
Discovery of substituted (4-phenyl-1<em>H</em>-imidazol-2-yl)methanamine as potent somatostatin receptor 3 agonists
- DOI:
10.1016/j.bmcl.2015.06.087 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:
- 作者:
Zhong Lai;Shuwen He;Edward C. Sherer;Zhicai Wu;Yang Yu;Richard Ball;Qingmei Hong;David X. Yang;Liangqing Guo;Derun Li;Quang Tuang;Gary G. Chicchi;Dorina Trusca;Kwei-Lan Tsao;Yun-Ping Zhou;Andrew D. Howard;Ravi P. Nargund;William K. Hagmann - 通讯作者:
William K. Hagmann
Helpful Answers to Modal and Hypothetical Questions
对模态和假设问题的有用答案
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
A. Roeck;Richard Ball;Keith Brown;C. Fox;Marjolein Groefsema;Nadim Obeid;R. Turner - 通讯作者:
R. Turner
MITOCHONDRIAL AUTONOMY
线粒体自主性
- DOI:
- 发表时间:
1972 - 期刊:
- 影响因子:7.8
- 作者:
H. Bosmann;M. Myers;Delena Dehond;Richard Ball;K. Case - 通讯作者:
K. Case
Richard Ball的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Ball', 18)}}的其他基金
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/X000494/1 - 财政年份:2023
- 资助金额:
$ 163.09万 - 项目类别:
Research Grant
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/P000630/1 - 财政年份:2017
- 资助金额:
$ 163.09万 - 项目类别:
Research Grant
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/L000458/1 - 财政年份:2014
- 资助金额:
$ 163.09万 - 项目类别:
Research Grant
Experimentally verified atomistic modelling of lime in construction materials
经过实验验证的建筑材料中石灰的原子模型
- 批准号:
EP/K025597/1 - 财政年份:2013
- 资助金额:
$ 163.09万 - 项目类别:
Research Grant
Particle Theory at the Tait Institute
泰特研究所的粒子理论
- 批准号:
ST/J000329/1 - 财政年份:2011
- 资助金额:
$ 163.09万 - 项目类别:
Research Grant
An Electrochemical Approach to Study Carbonation of Novel Lime Based Materials
研究新型石灰基材料碳化的电化学方法
- 批准号:
EP/I001204/1 - 财政年份:2010
- 资助金额:
$ 163.09万 - 项目类别:
Research Grant
相似国自然基金
强子对撞机上一对希格斯粒子产生和衰变过程的精确理论预言
- 批准号:12375076
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
结合引力波观测和粒子物理实验关于基本相互作用性质的理论研究
- 批准号:11875072
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
标准模型希格斯粒子性质及TeV新物理理论中希格斯部分结构的唯象研究
- 批准号:11775211
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
粒子物理模型构造和唯象
- 批准号:11475238
- 批准年份:2014
- 资助金额:86.0 万元
- 项目类别:面上项目
离散集合上的规范理论及其应用
- 批准号:19475064
- 批准年份:1994
- 资助金额:3.5 万元
- 项目类别:面上项目
相似海外基金
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/X000494/1 - 财政年份:2023
- 资助金额:
$ 163.09万 - 项目类别:
Research Grant
Probing new physics theory by the fusion of Higgs sector physics and dark matter physics
希格斯扇区物理与暗物质物理融合探索新物理理论
- 批准号:
21K03571 - 财政年份:2021
- 资助金额:
$ 163.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Grand Unified Theory indicated by Higgs Mass and Study of Proton Decay
希格斯质量表明的大统一理论与质子衰变研究
- 批准号:
19K03865 - 财政年份:2019
- 资助金额:
$ 163.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/P000363/1 - 财政年份:2017
- 资助金额:
$ 163.09万 - 项目类别:
Research Grant
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/P000630/1 - 财政年份:2017
- 资助金额:
$ 163.09万 - 项目类别:
Research Grant