XRF Condition Monitoring of Oil Lubricated Machines
油润滑机器的 XRF 状态监测
基本信息
- 批准号:ST/T000910/1
- 负责人:
- 金额:$ 46.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The technology (called LCM) to be developed in this project uses X-ray fluorescence spectroscopy (XRF) to measure the elemental composition and abundances of microscopic tribological debris caught in machine oil filters. It also measures the composition of the lubricant which also changes with wear. These data can be used to predict impending failure, target preventative maintenance, diagnose faults, and ensure optimum machine operation. LCM can be used on any oil lubricated machine with an oil filter. This project will build a fully functional demonstrator version of LCM, prove that it can operate in situ in real time on real running machinery, and prepare to bring it to market.Predicting impending failure and providing early warning of oil wear and machine wear enables operators to avoid downtime by targeting preventative maintenance. Optimum operation and preventing failure can be the difference between profit and loss. In safety critical systems detecting impending failures can save lives. As such, operators dedicate much time, money, and effort to condition monitoring. LCM is a novel system invented in the UK.
该项目开发的技术(称为LCM)使用X射线荧光光谱法(XRF)来测量机油滤清器中捕获的微观摩擦碎片的元素组成和丰度。它还可以测量润滑剂的成分,这些成分也会随着磨损而变化。这些数据可用于预测即将发生的故障、针对性预防性维护、诊断故障并确保机器的最佳运行。LCM可用于任何带滤油器的油润滑机器。该项目将构建一个功能齐全的LCM演示版,证明它可以在真实的运行机械上真实的现场运行,并准备将其推向市场。预测即将发生的故障并提供机油磨损和机器磨损的早期预警,使操作员能够通过有针对性的预防性维护避免停机。最佳操作和防止故障可能是利润和损失之间的区别。在安全关键系统中,检测即将发生的故障可以挽救生命。因此,操作员将大量时间、金钱和精力投入到状态监测中。LCM是英国发明的一种新型系统。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electron-hole pair creation and conversion efficiency in radioisotope microbatteries.
- DOI:10.1016/j.apradiso.2021.110042
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:G. Lioliou;A. M. Barnett
- 通讯作者:G. Lioliou;A. M. Barnett
The response of thick (10 µ m) AlInP x-ray and ?-ray detectors at up to 88 keV
厚 (10 µ m) AlInP X 射线和 γ 射线探测器在高达 88 keV 时的响应
- DOI:10.1063/5.0050751
- 发表时间:2021
- 期刊:
- 影响因子:3.2
- 作者:Lioliou G
- 通讯作者:Lioliou G
X-ray and ? -ray spectroscopy using a 2 × 2 GaAs p + -i-n + diode array
X 射线和?
- DOI:10.1016/j.nima.2020.164672
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Lioliou G
- 通讯作者:Lioliou G
Repurposing a low-cost commercial Si photodiode as a detector for X-ray and ? -ray spectroscopy at temperatures up to 80 °C
将低成本商用硅光电二极管重新用作 X 射线和 ? 探测器
- DOI:10.1016/j.nima.2021.165543
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Lioliou G
- 通讯作者:Lioliou G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Barnett其他文献
Atypical Movement Performance and Sensory Integration in Asperger’s Syndrome
- DOI:
10.1007/s10803-011-1301-2 - 发表时间:
2011-06-04 - 期刊:
- 影响因子:2.800
- 作者:
Panagiotis Siaperas;Howard A. Ring;Catherine J. McAllister;Sheila Henderson;Anna Barnett;Peter Watson;Anthony J. Holland - 通讯作者:
Anthony J. Holland
Abstracts of presentations on plant protection issues at the xth international congress of virology
- DOI:
10.1007/bf02981268 - 发表时间:
1998-03-01 - 期刊:
- 影响因子:1.500
- 作者:
Sijun Liu;Ian D. Bedford;Peter G. Markham;Morad Ghanim;Muhamad Zeidan;Henryk Czosnek;A. Bruyère;E. Herrbach;V. Brault;V. Ziegler-Graff;H. Guilley;J. F. J. M. van den Heuvel;M. A. Taiwo;J. Dijkstra;B. Martinez;J. J. López-Moya;C. Llave;J. R. Díaz-Ruíz;D. López-Abella;Y. Mikoshiba;K. Honda;S. Kanematsu;I. Fujisawa;Raffi Salomon;Francoise Bernardi;B. Raccah;S. Singer;A. Gal-On;H. Huet;J. J. López-Moya;T. P. Pirone;Peter B. Visser;John F. Bol;Carmen Hernández;Derek J. F. Brown;H. R. Pappu;A. K. Culbreath;J. W. Todd;R. M. McPherson;J. L. Sherwood;P. F. Bertrand;M. A. Robbins;R. D. Reade;D. M. Rochon;M. Schönfelder;M. Körbler;E. Barg;D. -E. Lesemann;H. J. Vetten;I. N. Manqussopoulos;M. Tsagris;E. Maiss;W. Marczewski;J. Syller;Javier Romero;Antonio Molina-Garcia;Mar Babin;Jozef J. Bujarski;Judy Pogany;L. Zhang;P. Palukaitis;I. B. Kaplan;Feng Qu;T. Jack Morris;H. Steinkellner;H. Puehringer;A. M. Laimer da Câmara Machado;J. Hammond;S. Brandt;H. Katinger;G. Himmler;K. Carrier;F. Hans;A. Wang;H. Sanfacon;László Palkovics;Ervin Balázs;K. Petrzik;I. Mráz;J. Fránová-Honetšlegrová;C. Kusiak;R. Berthome;S. Dinant;S. Astier;J. Albouy;J. P. Renou;E. Dal Bó;M. E. Sánchez de la Torre;K. Djelouah;M. L. García;O. Grau;Luna Benvenisti;Boris Gelman;Dalia Hai;Hagai Yadin;Yehuda Stram;Yechiel Becker;N. Čeřovská;M. Filigarová;P. Dědič;L. Nemchinov;A. Hadidi;Y. G. Choi;J. W. Randles;A. C. R. Samson;J. N. Wilford;S. Chapman;S. Santa Cruz;T. M. A. Wilson;Nicola Wilkinson;Louise Wilson;Susan Marlow;Linda King;Robert Possee;Fanxiu Zhu;Yipeng Qi;Yongxiu Huang;Jianhong Hu;Christian Oker-Blom;Kari Keinänen;B. K. Chauhan;R. D. Possee;T. J. French;Y. Finkelstein;B. Z. Levi;O. Faktor;Mira Toister-Achituv;Fushan Wang;Yipeng Qi;Yongxiu Huang;Liquan Lu;Quansheng Du;S. K. Watson;J. Kalmakoff;R. Broer;Y. Liu;D. Zuidema;E. A. van Strien;J. M. Vlak;J. G. M. Heldens;N. Chejanovsky;E. Gershburg;Mira Toister-Achituv;S. Faruchi;B. Kamensky;O. Faktor;O. Faktor;O. Nahum;D. Stockholm;H. Rivkin;M. Gurevitz;N. Chejanovsky;N. Zilberberg;E. Gershburg;D. Stockholm;H. Rivkin;N. Chejanovsky;M. Gurevitz;N. Zilberberg;E. Gershburg;P. Smith;L. A. King;A. Bamett;J. D. Windass;R. D. Possee;C. Jacobs;B. Fielding;S. Davison;E. Kunjeku;L. A. Guarino;D. L. Jarvis;L. Reilly;K. Hoover;C. M. Schultz;B. D. Hammock;K. H. J. Gordon;A. L. Bawden;E. M. Brooks;M. R. Lincoln;T. N. Hanzlik;P. J. Larkin;K. H. J. Gordon;A. L. Bawden;M. C. W. van Hulten;T. N. Hanzlik;D. A. Hendry;Rachel Stephens;Anna Barnett;Carole Thomas;Robert Possee;Linda King;Constantinos Phanis;David R. O’Reilly;E. Clarke;Michael Tristem;Jennifer Cory;David R. O’Reilly;M. A. Mayo;G. H. Duncan;B. Reavy;F. E. Gildow;J. W. Lamb;R. T. Hay;Shoudong Li;Bing Qi;Jiawang Wang;Yipeng Qi;David R. O’Reilly;WonKyung Kang;Norman E. Crook;Doreen Winstanley;M. H. Alaoui-Ismaili;C. D. Richardson;T. Lundsgaard;J. Kobayashi;T. Kayama;N. Ikeda;S. Miyajima;K. Inouye;T. Kimura;N. Suzuki;M. Sugawara;D. L. Nuss;Y. Matsuura;Laureano Simón;Huishan Guo;Juan Antonio García;S. Wang;W. A. Miller;K. Browning;Johannes Fütterer;Ingo Potrykus;Yiming Bao;Liu Li;Thomas M. Burns;Roger Hull;Thomas Hohn;K. L. Hefferon;M. G. AbouHaider;D. Hulanicka;M. Juszczuk;B. K. Iskakov;M. A. Shmanov;N. S. Polimbetova;S. Sh. Zhanybekova;A. V. Lee;N. N. Galiakparov;J. L. Dale;P. R. Beetham;G. J. Hafner;R. M. Harding;J. L. Dale - 通讯作者:
J. L. Dale
Anna Barnett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Barnett', 18)}}的其他基金
Novel X-ray/gamma-ray Detectors - Capital Equipment
新型 X 射线/伽马射线探测器 - 资本设备
- 批准号:
ST/T003391/1 - 财政年份:2019
- 资助金额:
$ 46.61万 - 项目类别:
Research Grant
MicroADS Spacecraft Attitude Determination System Instrument Software
MicroADS 航天器姿态确定系统仪器软件
- 批准号:
ST/R005184/1 - 财政年份:2018
- 资助金额:
$ 46.61万 - 项目类别:
Fellowship
MicroADS - Spacecraft Attitude Determination System
MicroADS - 航天器姿态确定系统
- 批准号:
ST/R000247/1 - 财政年份:2018
- 资助金额:
$ 46.61万 - 项目类别:
Research Grant
Novel X-ray/[gamma]-ray Detectors
新型 X 射线/γ 射线探测器
- 批准号:
ST/R001804/1 - 财政年份:2018
- 资助金额:
$ 46.61万 - 项目类别:
Research Grant
Photon counting X-ray and gamma-ray spectroscopy with Al0.52In0.48P detectors
使用 Al0.52In0.48P 探测器进行光子计数 X 射线和伽马射线光谱
- 批准号:
EP/P021271/1 - 财政年份:2017
- 资助金额:
$ 46.61万 - 项目类别:
Research Grant
High Efficiency Betavoltaic Cells
高效贝塔伏特电池
- 批准号:
ST/M002772/1 - 财政年份:2015
- 资助金额:
$ 46.61万 - 项目类别:
Research Grant
In situ X-ray Fluorescence Spectroscopy for Deep Sea Mining Applications
用于深海采矿应用的原位 X 射线荧光光谱
- 批准号:
ST/M004635/1 - 财政年份:2015
- 资助金额:
$ 46.61万 - 项目类别:
Research Grant
相似海外基金
Railway Quantum Inertial Navigation System for Condition Based Monitoring (Phase 2)
铁路量子惯性导航状态监测系统(二期)
- 批准号:
10107100 - 财政年份:2024
- 资助金额:
$ 46.61万 - 项目类别:
Small Business Research Initiative
Condition Monitoring of Aircraft Propulsion for Automated Diagnostics
用于自动诊断的飞机推进状态监测
- 批准号:
LP220200934 - 财政年份:2024
- 资助金额:
$ 46.61万 - 项目类别:
Linkage Projects
Enhancing Condition Monitoring and Prognostics of Variable Speed Motor Drives Using Machine Learning and IoT Technologies
使用机器学习和物联网技术增强变速电机驱动器的状态监测和预测
- 批准号:
2910604 - 财政年份:2024
- 资助金额:
$ 46.61万 - 项目类别:
Studentship
Optimising CNC Machine Tool Coolant Fluid condition to prolong usage and efficiency of an expensive essential resource thereby reducing cost, improving production quality and protecting operators using a unique and innovative Coolant Monitoring Analyser
使用独特和创新的冷却液监测分析仪优化数控机床冷却液条件,延长昂贵的重要资源的使用时间和效率,从而降低成本、提高生产质量并保护操作员
- 批准号:
10075142 - 财政年份:2023
- 资助金额:
$ 46.61万 - 项目类别:
Grant for R&D
WINDTWIN: Condition monitoring of wind turbine gearbox toward digital twin ecosystem
WINDTWIN:面向数字孪生生态系统的风力涡轮机齿轮箱状态监测
- 批准号:
EP/Y028325/1 - 财政年份:2023
- 资助金额:
$ 46.61万 - 项目类别:
Fellowship
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
- 批准号:
10629554 - 财政年份:2023
- 资助金额:
$ 46.61万 - 项目类别:
Next generation predictive maintenance for wind turbine blade/hub/rotor through novel online condition monitoring/root cause analysis: MONTURWIND
通过新颖的在线状态监测/根本原因分析对风力涡轮机叶片/轮毂/转子进行下一代预测性维护:MONTUWIND
- 批准号:
10041137 - 财政年份:2023
- 资助金额:
$ 46.61万 - 项目类别:
Collaborative R&D
Condition Monitoring of Cable Structures using Digital Twin
使用数字孪生对电缆结构进行状态监测
- 批准号:
2891654 - 财政年份:2023
- 资助金额:
$ 46.61万 - 项目类别:
Studentship
Demonstrating the feasibility of applying machine learning models to railway condition data: Engine condition monitoring and failure prediction
展示将机器学习模型应用于铁路状况数据的可行性:发动机状况监测和故障预测
- 批准号:
10080979 - 财政年份:2023
- 资助金额:
$ 46.61万 - 项目类别:
Collaborative R&D
Machine Learning for condition monitoring of production equipment
用于生产设备状态监测的机器学习
- 批准号:
10075524 - 财政年份:2023
- 资助金额:
$ 46.61万 - 项目类别:
Grant for R&D