BRIdging Disciplines of Galactic Chemical Evolution(BRIDGCE) Consortium 2021-2024

银河化学演化桥接学科 (BRIDGCE) 联盟 2021-2024

基本信息

  • 批准号:
    ST/V000233/1
  • 负责人:
  • 金额:
    $ 41.94万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

"How did the Universe begin and evolve" is one of the three science challenges identified in the STFC Astronomy Programme. We address this question by modelling physical processes from the micro (nuclear, stellar) to the macro scales (galactic, cosmological), studying the ionising and chemical feedback from stars and the wider context of galaxy formation.The BRIDGCE consortium is a multidisciplinary collaboration between nuclear, stellar and extra-galactic astrophysicists, which aims to achieve a comprehensive understanding of the evolution of the Universe from the era of reionisation up to now, using chemical elements as fingerprints of the physical processes that occur in stars and galaxies. Elements heavier than helium are produced in stars and supernovae on different timescales, and the stellar populations and interstellar medium within galaxies keep a record of star formation and chemical enrichment histories of galaxies. Therefore, it is also possible to constrain galaxy formation theory from the observed elemental abundances, and to do this more accurately we need to understand stellar and nuclear Astrophysics. Moreover, the discovery of gravitational waves (GW) has opened a new window to the Universe, allowing us to observe the formation of black holes and neutron stars more directly than ever before. GWs can provide independent new constraints on stellar winds, evolution, and stellar deaths via black hole remnants, and the seeds of super-massive black holes in galaxies.The development of high-performance computing enables us to study the theory of stars and galaxies self-consistently: we simulate how stars lose mass via stellar winds prior to supernovae explosions (Project-1); we simulate the full evolution of stars in one-dimension (1D) and compute 3D scans of their interiors (Project-2). Furthermore, by combining stellar evolution and nucleosynthesis to galactic dynamical evolution, we reproduce the entire chemodynamical history of local dwarf galaxies (Project-3) and of the Milky Way (Project-4). Our research addresses some of the key questions of 21st century Astronomy: How black holes and neutron stars are formed (Projects 1 & 2)?, How many GW events will be detected in future missions?, and How we can trace the evolution of the Universe from GWs (Project-5)?Nuclear data (nuclear reaction rates in particular) are a key input for stellar evolution models since nuclear reactions provide the energy that powers stars. This information determines stellar lifetimes and the composition of their ejecta. Stars provide important feedback into galaxies through the light they radiate, their powerful winds and explosions, and all the chemical elements they produce. The outputs of stellar models are thus key ingredients for galactic chemical evolution models. These models follow successive episodes of star formation and trace the history of the enrichment of the elements. The model predictions can then be compared to observations of stars, stellar populations, and the inter-stellar medium that carries the chemical fingerprints of the cumulative chemical enrichment that preceded their birth. Comparison to observations can thus constrain both the galactic and stellar properties. Finally, most stars are not born on their own, but may instead evolve interacting with a companion. Although this has been known for decades, the impact of binarity on galaxy evolution is poorly known.In the BRIDGCE 2021-2024 grant, our galaxy experts will explore this new scientific problem together with our stellar experts. Our consortium project applies innovative techniques across different disciplines and tackles this challenge through 5 projects corresponding to very different physical scales: stellar envelopes (Project-1), stellar cores (Project-2), local dwarf galaxies (Project-3), the Milky Way (Project-4), and the Universe as a whole (Project-5). These impact many areas of Astrophysics as well as Cosmology & Nuclear Physics.
“宇宙是如何开始和演化的”是STFC天文学计划确定的三个科学挑战之一。我们通过从微观角度模拟物理过程来解决这个问题。(核,恒星)到宏观尺度(银河系,宇宙学),研究来自恒星的电离和化学反馈以及星系形成的更广泛背景。BRIDGCE联盟是核,恒星和河外天体物理学家之间的多学科合作,该计划旨在利用化学元素作为恒星和星系中发生的物理过程的指纹,全面了解宇宙从再电离时代到现在的演变。恒星和超新星在不同的时间尺度上产生比氦重的元素,星系内的恒星种群和星际介质记录着星系的星星形成和化学富集历史。因此,也有可能从观测到的元素丰度中限制星系形成理论,为了更准确地做到这一点,我们需要了解恒星和核天体物理学。此外,引力波(GW)的发现为宇宙打开了一扇新的窗口,使我们能够比以往更直接地观察黑洞和中子星的形成。高性能计算的发展使我们能够自洽地研究恒星和星系的理论:我们模拟恒星在超新星爆炸前如何通过恒星风失去质量(项目-1);我们模拟恒星在一维(1D)中的完整演化,并计算其内部的3D扫描(项目-2)。此外,通过结合恒星演化和核合成星系的动力学演化,我们再现了整个化学动力学的历史本地矮星系(项目-3)和银河系(项目-4)。我们的研究解决了21世纪世纪天文学的一些关键问题:黑洞和中子星是如何形成的(项目1和2)?在未来的任务中将检测到多少GW事件?以及我们如何从引力波追踪宇宙的演化(项目-5)?核数据(特别是核反应速率)是恒星演化模型的关键输入,因为核反应提供了恒星的能量。这些信息决定了恒星的寿命和它们喷出物的成分。恒星通过它们辐射的光、它们强大的风和爆炸以及它们产生的所有化学元素向星系提供重要的反馈。因此,恒星模型的输出是星系化学演化模型的关键成分。这些模型遵循星星形成的连续情节,并追踪元素富集的历史。然后,可以将模型预测与恒星、恒星种群和星际介质的观测进行比较,这些星际介质携带着它们诞生之前累积的化学富集的化学指纹。因此,与观测结果的比较可以限制银河系和恒星的性质。最后,大多数恒星不是自己诞生的,而是可能与伴星相互作用而演化。虽然这一点已经知道了几十年,但双星对星系演化的影响却知之甚少。在BRIDGCE 2021-2024资助中,我们的星系专家将与我们的恒星专家一起探索这一新的科学问题。我们的联盟项目将创新技术应用于不同的学科,并通过5个项目应对这一挑战,这些项目对应于非常不同的物理尺度:恒星包络(项目-1),恒星核心(项目-2),本地矮星系(项目-3),银河系(项目-4)和整个宇宙(项目-5)。这些影响了天体物理学以及宇宙学和核物理学的许多领域。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Very Massive Stars and Pair-Instability Supernovae: Mass-loss Framework for low Metallicity
超大质量恒星和对不稳定超新星:低金属丰度的质量损失框架
  • DOI:
    10.48550/arxiv.2306.11785
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sabhahit G
  • 通讯作者:
    Sabhahit G
Stellar age determination in the mass-luminosity plane
质量-光度平面中的恒星年龄测定
The hydrogen clock to infer the upper stellar mass
氢钟推断上层恒星质量
Mapping the core of the Tarantula Nebula with VLT-MUSE II. The spectroscopic Hertzsprung-Russell diagram of OB stars in NGC 2070
使用 VLT-MUSE II 绘制狼蛛星云的核心图。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Castro N.
  • 通讯作者:
    Castro N.
The Structure and Evolution of Stars: Introductory Remarks
  • DOI:
    10.3390/galaxies11050094
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    D. Bowman;J. V. van Saders;J. Vink
  • 通讯作者:
    D. Bowman;J. V. van Saders;J. Vink
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jorick Vink其他文献

Jorick Vink的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jorick Vink', 18)}}的其他基金

Cosmic Impact of Massive Stars: Mass Loss and Mixing
大质量恒星的宇宙影响:质量损失和混合
  • 批准号:
    ST/R000565/1
  • 财政年份:
    2018
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Research Grant
The mass loss and death of massive stars
大质量恒星的质量损失和死亡
  • 批准号:
    ST/F002181/1
  • 财政年份:
    2008
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Research Grant

相似海外基金

Developing Teaching Tools to Promote Transfer of Core Concept Knowledge Across Biological Scales and Sub-disciplines.
开发教学工具以促进跨生物尺度和子学科的核心概念知识的转移。
  • 批准号:
    2336776
  • 财政年份:
    2024
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
Developing Teaching Tools to Promote Transfer of Core Concept Knowledge Across Biological Scales and Sub-disciplines.
开发教学工具以促进跨生物尺度和子学科的核心概念知识的转移。
  • 批准号:
    2336777
  • 财政年份:
    2024
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
Developing Teaching Tools to Promote Transfer of Core Concept Knowledge Across Biological Scales and Sub-disciplines.
开发教学工具以促进跨生物尺度和子学科的核心概念知识的转移。
  • 批准号:
    2336778
  • 财政年份:
    2024
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
Planning: FIRE-PLAN: Planning Megafire Research Across Scales and Disciplines
规划:FIRE-PLAN:规划跨规模和学科的特大火灾研究
  • 批准号:
    2326499
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
Building Capacity for Investigating the Use of Spatial Reasoning in Fluid-Earth Science Disciplines
流体地球科学学科中空间推理应用研究能力建设
  • 批准号:
    2225637
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
Exploring the trends and perceptions of diversified scholarly publishing for dialogue across disciplines
探索多元化学术出版的趋势和认知,促进跨学科对话
  • 批准号:
    23K12845
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
NSF-BSF: Learning the concept of Dynamic Equilibrium across disciplines with SystEms Augmented Mechanistic Representations
NSF-BSF:通过 SystEms 增强机械表示学习跨学科动态平衡的概念
  • 批准号:
    2240216
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
Mentoring Across Disciplines: Aging and Infectious Diseases with a Focus on Mobility
跨学科指导:以流动性为重点的老龄化和传染病
  • 批准号:
    10757167
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
Equitable and Effective Teaching in Undergraduate STEM Education: A Framework for Institutions, Educators, and Disciplines
本科 STEM 教育中公平有效的教学:机构、教育工作者和学科的框架
  • 批准号:
    2309335
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
S-STEM Collaborative Planning Grant: An accelerated 3+2 pathway to BS and MS degrees in Semiconductor Manufacturing and Quantum Science disciplines
S-STEM 协作规划补助金:获得半导体制造和量子科学学科学士和硕士学位的加速 3 2 途径
  • 批准号:
    2322670
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了