Theoretical Studies of Particles and Strings
粒子和弦的理论研究
基本信息
- 批准号:ST/X000761/1
- 负责人:
- 金额:$ 267.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Our ultimate aim is to understand the nature of matter & forces, and the content & evolution of the universe as a whole. One of the most intriguing features of reality is what the physicist Eugene Wigner called "the unreasonable effectiveness of mathematics in the natural sciences" in being able to provide an accurate & predictive description of observed phenomena. As theoretical physicists we exploit this by motivating and constructing mathematical models of physical systems, for which we also devise experimental tests whenever possible, as these are ultimately the arbiter of truth.Our focus is on the fundamental constituents and interactions of matter, both within the Standard Model (SM) of the strong, weak & electromagnetic interactions, and searching for understanding of phenomena not explained by the SM, such as quantum gravity.Experimentally, there are many ways of attempting to understand these fundamental constituents and interactions. Fundamental particles can be produced and studied at accelerators like the Large Hadron Collider (LHC) at CERN. It is also possible to learn about them from the cosmic rays produced in extreme astrophysical environments and through cosmological and gravitational wave signatures left over from the early stages of the universe.Our theoretical work accompanies and complements such experimental work in multiple ways:1. We determine the experimental and observational consequences of concrete theories of fundamental particles & interactions that attempt to explain some of the major open mysteries such as the nature of dark matter. We consider a broad range of potential signatures, including gravitational waves, high-energy cosmic rays, phenomena at colliders such as the LHC and manifestations in a range of highly sensitive experiments based on new quantum technologies. We also examine to what extent known phenomena, such as black-hole production, could explain mysteries such as dark matter.2. We explore string theory, which offers the possibility of understanding how to reconcile quantum mechanics and gravity. This provides an extremely rich theoretical framework, offering many avenues to study. For example, string theory naturally involves many more dimensions than four spacetime dimensions that we are familiar with and we attempt to understand how those dimensions can be folded up so as to be imperceptible to us. We explore internal consistency conditions on theories of quantum gravity, and we devise techniques for calculations within string theory. Machine learning is used to help navigate our way through the huge number of spacetime geometries that string theory offers.3. Both known and proposed new theories of fundamental interactions often involve regimes where the underlying particles interact strongly. This is the case, for example, for the well established theory of the strong force, quantum chromodynamics. The regime of strong interactions is one where it is challenging to relate the characteristics of the underlying theory to potential experimental observations, and part of our effort is devoted to devising methods to better understand the consequences of strongly-interacting theories, both within string theory, which offers numerous frameworks to study strong interactions, as well as with a view to phenomenological applications.4. We also put considerable effort into making predictions for theories that are weakly interacting. This is especially important in order to draw conclusions from the high-precision data about the Higgs boson and other particles being studied at CERN's LHC. The basic principles for how to make predictions for weakly interacting theories are well established, however putting them into practice brings huge challenges, which we attempt to address through novel mathematical, computational and physics approaches.
我们的最终目标是理解物质和力的本质,以及整个宇宙的内容和演化。物理学家尤金·维格纳(Eugene Wigner)称之为“数学在自然科学中的不合理的有效性”,它能够为观察到的现象提供准确和预测性的描述。作为理论物理学家,我们通过激发和构建物理系统的数学模型来利用这一点,我们也尽可能设计实验测试,因为这些最终是真理的仲裁者。我们的重点是物质的基本组成和相互作用,无论是在强,弱和电磁相互作用的标准模型(SM)中,还是在SM中寻找无法解释的现象的理解,比如量子引力。从实验上讲,有很多方法可以试图理解这些基本成分和相互作用。基本粒子可以在欧洲核子研究中心的大型强子对撞机(LHC)等加速器上产生和研究。我们也可以从极端天体物理环境中产生的宇宙射线以及宇宙早期遗留下来的宇宙学和引力波特征中了解它们。我们的理论工作以多种方式伴随和补充了这些实验工作:1.我们确定了基本粒子和相互作用的具体理论的实验和观测结果,这些理论试图解释一些主要的开放之谜,如暗物质的性质。我们考虑了广泛的潜在特征,包括引力波,高能宇宙射线,对撞机(如LHC)的现象以及基于新量子技术的一系列高灵敏度实验中的表现。我们还研究了已知的现象,如黑洞的产生,在多大程度上可以解释暗物质等奥秘。我们探索弦理论,它提供了理解如何调和量子力学和引力的可能性。这提供了一个极其丰富的理论框架,提供了许多研究途径。例如,弦理论自然涉及比我们所熟悉的四维时空更多的维度,我们试图理解这些维度如何折叠起来,使我们无法感知。我们探索量子引力理论的内部一致性条件,并设计弦理论内的计算技术。机器学习被用来帮助我们在弦理论提供的大量时空几何中导航。已知的和提出的基本相互作用的新理论通常涉及基础粒子强烈相互作用的区域。例如,已经建立的强力理论、量子色动力学就是这种情况。强相互作用的机制是一个具有挑战性的基础理论的特点,潜在的实验观察,我们的努力的一部分是致力于设计方法,以更好地理解强相互作用理论的后果,无论是在弦理论,它提供了许多框架来研究强相互作用,以及着眼于现象学的应用。我们也投入了相当大的努力来预测弱相互作用的理论。为了从CERN LHC正在研究的希格斯玻色子和其他粒子的高精度数据中得出结论,这一点尤其重要。如何对弱相互作用理论进行预测的基本原则已经确立,但是将它们付诸实践会带来巨大的挑战,我们试图通过新的数学,计算和物理方法来解决这些挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gavin Salam其他文献
Gavin Salam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gavin Salam', 18)}}的其他基金
Theoretical Studies of Particles & Strings
粒子的理论研究
- 批准号:
ST/T000864/1 - 财政年份:2020
- 资助金额:
$ 267.26万 - 项目类别:
Research Grant
相似海外基金
Theoretical Studies of Particles & Strings
粒子的理论研究
- 批准号:
ST/T000864/1 - 财政年份:2020
- 资助金额:
$ 267.26万 - 项目类别:
Research Grant
Theoretical Studies of Elementary Particles
基本粒子的理论研究
- 批准号:
ST/P000770/1 - 财政年份:2017
- 资助金额:
$ 267.26万 - 项目类别:
Research Grant
Theoretical Studies of Elementary Particles
基本粒子的理论研究
- 批准号:
ST/P000789/1 - 财政年份:2017
- 资助金额:
$ 267.26万 - 项目类别:
Research Grant
Theoretical studies of scalar particles in the standard model: Scalar mesons and Higgs Bosons
标准模型中标量粒子的理论研究:标量介子和希格斯玻色子
- 批准号:
137501-2010 - 财政年份:2014
- 资助金额:
$ 267.26万 - 项目类别:
Subatomic Physics Envelope - Individual
Theoretical studies of scalar particles in the standard model: Scalar mesons and Higgs Bosons
标准模型中标量粒子的理论研究:标量介子和希格斯玻色子
- 批准号:
137501-2010 - 财政年份:2013
- 资助金额:
$ 267.26万 - 项目类别:
Subatomic Physics Envelope - Individual
Experimental and Theoretical Studies of Light Scattering from Irregularly Shaped Particles
不规则形状粒子光散射的实验和理论研究
- 批准号:
1261651 - 财政年份:2013
- 资助金额:
$ 267.26万 - 项目类别:
Continuing Grant
Theoretical studies of scalar particles in the standard model: Scalar mesons and Higgs Bosons
标准模型中标量粒子的理论研究:标量介子和希格斯玻色子
- 批准号:
137501-2010 - 财政年份:2012
- 资助金额:
$ 267.26万 - 项目类别:
Subatomic Physics Envelope - Individual
Theoretical studies of scalar particles in the standard model: Scalar mesons and Higgs Bosons
标准模型中标量粒子的理论研究:标量介子和希格斯玻色子
- 批准号:
137501-2010 - 财政年份:2011
- 资助金额:
$ 267.26万 - 项目类别:
Subatomic Physics Envelope - Individual
Theoretical studies of scalar particles in the standard model: Scalar mesons and Higgs Bosons
标准模型中标量粒子的理论研究:标量介子和希格斯玻色子
- 批准号:
137501-2010 - 财政年份:2010
- 资助金额:
$ 267.26万 - 项目类别:
Subatomic Physics Envelope - Individual
Graduate Studies in Theoretical High Energy Particles
理论高能粒子研究生
- 批准号:
394288-2010 - 财政年份:2010
- 资助金额:
$ 267.26万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's