Higher representation theory
更高表示理论
基本信息
- 批准号:DE120102369
- 负责人:
- 金额:$ 26.91万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Early Career Researcher Award
- 财政年份:2012
- 资助国家:澳大利亚
- 起止时间:2012-06-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Representation theory lies at the very centre of mathematics, with applications in all areas of mathematics and mathematical physics; at some level it is about observing the symmetries of a system and exploiting them, and this has been invaluable. This project will explore the forefront of the modern, higher version of this research field.
表示论是数学的核心,在数学和数学物理的所有领域都有应用;在某种程度上,它是关于观察系统的对称性并利用它们,这是无价的。本项目将探索这一研究领域的现代前沿、更高版本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Anthony Licata其他文献
Prof Anthony Licata的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Anthony Licata', 18)}}的其他基金
Stability conditions: their topology and applications
稳定性条件:拓扑和应用
- 批准号:
DP240101084 - 财政年份:2024
- 资助金额:
$ 26.91万 - 项目类别:
Discovery Projects
Groups, piecewise linear representations, and linear 2-representations
群、分段线性表示和线性 2-表示
- 批准号:
FT180100069 - 财政年份:2019
- 资助金额:
$ 26.91万 - 项目类别:
ARC Future Fellowships
Braid groups and higher representation theory
辫子群和更高表示理论
- 批准号:
DP140103821 - 财政年份:2014
- 资助金额:
$ 26.91万 - 项目类别:
Discovery Projects
相似国自然基金
稀疏表示及其在盲源分离中的应用研究
- 批准号:61104053
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
约化群GL(n, F)的表示--F是非阿基米德局部域
- 批准号:10701034
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
信号盲处理的稀疏表示方法
- 批准号:60475004
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Higher Representation Theory and Subfactors
更高表示理论和子因素
- 批准号:
2400089 - 财政年份:2024
- 资助金额:
$ 26.91万 - 项目类别:
Standard Grant
Stable homotopy refinements in higher representation theory
更高表示理论中的稳定同伦改进
- 批准号:
567835-2022 - 财政年份:2022
- 资助金额:
$ 26.91万 - 项目类别:
Postdoctoral Fellowships
New Topologically Inspired Directions in Higher Representation Theory
更高表示理论中受拓扑启发的新方向
- 批准号:
2200419 - 财政年份:2022
- 资助金额:
$ 26.91万 - 项目类别:
Continuing Grant
Higher structures and deformations in representation theory
表示论中的高级结构和变形
- 批准号:
503982309 - 财政年份:2022
- 资助金额:
$ 26.91万 - 项目类别:
Research Grants
Higher Depth in Representation Theory, Number Theory, and Quantum Topology
更深入的表示论、数论和量子拓扑
- 批准号:
2101844 - 财政年份:2021
- 资助金额:
$ 26.91万 - 项目类别:
Continuing Grant
Higher Representation Theory and Heegaard Floer Homology
更高表示理论和 Heegaard Floer 同调
- 批准号:
2151786 - 财政年份:2021
- 资助金额:
$ 26.91万 - 项目类别:
Standard Grant
Higher Representation Theory and Heegaard Floer Homology
更高表示理论和 Heegaard Floer 同调
- 批准号:
2101916 - 财政年份:2021
- 资助金额:
$ 26.91万 - 项目类别:
Standard Grant
Research of higher order Painleve systems and rigid systems from a viewpoint of representation theory
从表示论的角度研究高阶Painleve系统和刚性系统
- 批准号:
20K03645 - 财政年份:2020
- 资助金额:
$ 26.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homotopical Methods in Higher Representation Theory
高级表示理论中的同伦方法
- 批准号:
1902092 - 财政年份:2019
- 资助金额:
$ 26.91万 - 项目类别:
Standard Grant
CAREER: Higher Enumerative Geometry via Representation Theory and Mathematical Physics
职业:通过表示论和数学物理进行高等枚举几何
- 批准号:
1845034 - 财政年份:2019
- 资助金额:
$ 26.91万 - 项目类别:
Continuing Grant














{{item.name}}会员




